Details

Synthesis and Applications of Inorganic Nanostructures


Synthesis and Applications of Inorganic Nanostructures


1. Aufl.

von: Huaqiang Cao

153,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 13.09.2017
ISBN/EAN: 9783527698165
Sprache: englisch
Anzahl Seiten: 560

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Authored by a leading figure in the field, this book systematically describes all the fundamental aspects and applications of inorganic nanostructures from zero to three dimensions. It not only discusses various synthesis technologies, but also covers the physical properties of inorganic nanostructures, such as optical, electric and magnetic properties, and practical applications such as energy storage (including Li-ion and Ni-MH batteries and supercapacitors), superhydrophobic and bio-applications, etc. The focus throughout is on the synthesis-structure-application relationships, including the growth mechanisms for the nanostrucutres.<br> Concise yet comprehensive, this is indispensable reading for chemists and materials scientists.
<p><b>Preface </b><i>xvii</i></p> <p><b>Acknowledgments </b><i>xix</i></p> <p><b>1 Introduction </b><i>1</i></p> <p>1.1 Wave-Particle Duality <i>2</i></p> <p>1.2 Uncertainty Principle <i>3</i></p> <p>1.3 Schrödinger Equation <i>3</i></p> <p>1.4 Particle in a Potential Box <i>4</i></p> <p>1.5 Fermi-Dirac Distribution and Fermi Energy <i>5</i></p> <p>1.6 Density of States <i>7</i></p> <p>1.7 Quantum Confinement <i>8</i></p> <p>1.8 Top-Down and Bottom-Up Approaches to Construct Nanostructures <i>10</i></p> <p>1.9 Nanostructured Materials Based on Dimension <i>11</i></p> <p>1.10 Zero-Dimensional Nanostructures <i>11</i></p> <p>1.11 One-Dimensional Nanostructures <i>13</i></p> <p>1.12 Two-Dimensional Nanostructures <i>14</i></p> <p>1.13 Three-Dimensional Nanostructures: Superstructures and Hybrid</p> <p>Structures <i>15</i></p> <p>References <i>16</i></p> <p><b>2 Synthesis, Characterization, and Applications of Zero-Dimensional (0D) Nanostructures </b><i>21</i></p> <p>2.1 General Remarks <i>21</i></p> <p>2.2 Synthesis, Characterization, and Bioapplication of Metal Ag Nanoparticles <i>21</i></p> <p>2.2.1 Synthesis of GSH-Coated Ag NPs <i>22</i></p> <p>2.2.1.1 Ag NPs and BSA Binding <i>22</i></p> <p>2.2.1.2 SDS-PAGE of Ag NPs and BSA Binding <i>22</i></p> <p>2.2.1.3 Cell Culture and Treatment <i>23</i></p> <p>2.2.1.4 MTT (Thiazolyl Blue) Assay <i>23</i></p> <p>2.2.1.5 Fluorescence Observation of K562 Cells Stained by Hoechst 33258 <i>23</i></p> <p>2.2.1.6 Flow Cytometer Measurement <i>23</i></p> <p>2.2.2 Characterization <i>24</i></p> <p>2.2.3 Structure <i>24</i></p> <p>2.2.4 Binding of Ag NPs and BSA <i>25</i></p> <p>2.2.5 Anticancer Activities of Ag NPs <i>29</i></p> <p>2.3 Synthesis, Characterization, and Optical Properties of Oxide Nanoparticles <i>33</i></p> <p>2.3.1 SnO2 Nanoparticles <i>33</i></p> <p>2.3.1.1 Synthesis <i>35</i></p> <p>2.3.1.2 Characterization <i>35</i></p> <p>2.3.1.3 Photocatalytic Activity Test <i>35</i></p> <p>2.3.1.4 Structure <i>35</i></p> <p>2.3.2 ZrO2 Nanoparticles <i>45</i></p> <p>2.3.2.1 Synthesis <i>45</i></p> <p>2.3.2.2 Characterization <i>45</i></p> <p>2.3.2.3 Photocatalytic Activity Test <i>46</i></p> <p>2.3.2.4 Structure <i>46</i></p> <p>2.3.2.5 Optical Properties of ZrO2 Nanoparticles <i>49</i></p> <p>2.3.2.6 Photocatalytic Properties <i>51</i></p> <p>2.3.3 In2O3 Hollow Nanocrystals <i>52</i></p> <p>2.3.3.1 Synthesis <i>52</i></p> <p>2.3.3.2 Characterization <i>53</i></p> <p>2.3.3.3 Photocatalytic Activity Test <i>53</i></p> <p>2.3.3.4 Structure <i>53</i></p> <p>2.3.3.5 Growth Mechanism of the rh-In2O3 Hollow Nanocrystals <i>58</i></p> <p>2.3.3.6 Photocatalytic Activity of the rh-In2O3 Hollow Nanocrystals <i>61</i></p> <p>2.3.4 Fe2O3 Nanoparticles <i>68</i></p> <p>2.3.4.1 Synthesis <i>69</i></p> <p>2.3.4.2 Characterization <i>69</i></p> <p>2.3.4.3 Measurement of Magnetic Properties <i>69</i></p> <p>2.3.4.4 Structure <i>71</i></p> <p>2.3.4.5 Magnetic Properties <i>73</i></p> <p>2.4 Synthesis, Characterization, and Optical Properties of Sulfide Nanoparticles <i>74</i></p> <p>2.4.1 CdS Nanoparticles <i>74</i></p> <p>2.4.1.1 Synthesis <i>76</i></p> <p>2.4.1.2 Characterization <i>76</i></p> <p>2.4.1.3 Structure <i>76</i></p> <p>2.4.1.4 Growth Mechanism <i>80</i></p> <p>2.4.1.5 Photoluminescence Properties <i>82</i></p> <p>2.4.2 ZnS Nanoparticles and Microspheres <i>83</i></p> <p>2.4.2.1 Synthesis of ZnS Nanoparticles and Microspheres <i>84</i></p> <p>2.4.2.2 Characterization <i>84</i></p> <p>2.4.2.3 Structure <i>84</i></p> <p>2.4.2.4 Optical Properties <i>90</i></p> <p>2.4.3 Ag2S Nanospheres <i>92</i></p> <p>2.4.3.1 Synthesis <i>92</i></p> <p>2.4.3.2 Characterization <i>93</i></p> <p>2.4.3.3 Structure <i>93</i></p> <p>2.4.3.4 Optical Properties of Ag2S Nanospheres <i>95</i></p> <p>2.4.3.5 Growth Mechanism <i>96</i></p> <p>2.5 Synthesis, Characterization, and Magnetic Properties of Oxide Nanocubes <i>101</i></p> <p>2.5.1 Fe2O3 Nanocubes <i>101</i></p> <p>2.5.1.1 Synthesis <i>101</i></p> <p>2.5.1.2 Characterization <i>103</i></p> <p>2.5.1.3 Structure <i>104</i></p> <p>2.5.1.4 Magnetic Properties <i>106</i></p> <p>2.5.2 Fe3O4 Nanocubes <i>106</i></p> <p>2.5.2.1 Synthesis <i>107</i></p> <p>2.5.2.2 Characterization <i>107</i></p> <p>2.5.2.3 Magnetic Behavior Measurement <i>107</i></p> <p>2.5.2.4 Electrochemical Measurement <i>107</i></p> <p>2.5.2.5 Structure <i>108</i></p> <p>2.5.2.6 Growth Mechanism <i>110</i></p> <p>2.5.2.7 Magnetic Properties <i>115</i></p> <p>2.5.2.8 Applied as Anode for LIBs <i>117</i></p> <p>2.6 Synthesis, Characterization, and Photocatalytic Application of Microspheres (Bi@Bi2O3 Microspheres) <i>119</i></p> <p>2.6.1 Synthesis <i>120</i></p> <p>2.6.2 Characterization <i>121</i></p> <p>2.6.3 Photocatalytic Test <i>121</i></p> <p>2.6.4 Structure <i>122</i></p> <p>2.6.5 Growth Mechanism <i>124</i></p> <p>2.6.6 Optical Properties <i>126</i></p> <p>2.6.7 Photocatalytic Activities <i>127</i></p> <p>References <i>133</i></p> <p><b>3 Synthesis, Characterization, and Application of One-Dimensional (1D) Nanostructures </b><i>147</i></p> <p>3.1 General Remarks <i>147</i></p> <p>3.2 Synthesis, Characterization, and Magnetic/Electrical Properties of Metal Nanowires/Nanotubes <i>147</i></p> <p>3.2.1 Fe Nanowire Arrays <i>147</i></p> <p>3.2.1.1 Synthesis <i>148</i></p> <p>3.2.1.2 Characterization <i>148</i></p> <p>3.2.1.3 Structure <i>149</i></p> <p>3.2.1.4 Magnetic Properties <i>150</i></p> <p>3.2.2 Co Nanowire Arrays <i>150</i></p> <p>3.2.2.1 Synthesis <i>151</i></p> <p>3.2.2.2 Characterization <i>152</i></p> <p>3.2.2.3 Structure <i>152</i></p> <p>3.2.2.4 Magnetic Properties <i>152</i></p> <p>3.2.3 Ni Nanowire Arrays <i>154</i></p> <p>3.2.3.1 Synthesis <i>154</i></p> <p>3.2.3.2 Characterization <i>155</i></p> <p>3.2.3.3 Structure <i>155</i></p> <p>3.2.3.4 Magnetic Properties <i>156</i></p> <p>3.2.4 Cu Nanowire Arrays <i>156</i></p> <p>3.2.4.1 Synthesis <i>156</i></p> <p>3.2.4.2 Characterization <i>157</i></p> <p>3.2.4.3 Structure <i>157</i></p> <p>3.2.4.4 Electrical Properties <i>159</i></p> <p>3.2.5 Growth Mechanism for 1D Metal Nanostructures <i>160</i></p> <p>3.2.5.1 Synthesis <i>161</i></p> <p>3.2.5.2 Characterization <i>161</i></p> <p>3.2.5.3 Structure <i>161</i></p> <p>3.2.5.4 Growth Mechanism <i>164</i></p> <p>3.3 Synthesis, Characterization, and Optical Properties of Metal Oxide Nanowires/Nanotubes <i>167</i></p> <p>3.3.1 In2O3 Nanowires <i>167</i></p> <p>3.3.1.1 Synthesis <i>168</i></p> <p>3.3.1.2 Characterization <i>168</i></p> <p>3.3.1.3 Structure <i>168</i></p> <p>3.3.1.4 Photoluminescence Properties <i>169</i></p> <p>3.3.2 ZrO2 Nanowires <i>170</i></p> <p>3.3.2.1 Synthesis <i>171</i></p> <p>3.3.2.2 Characterization <i>171</i></p> <p>3.3.2.3 Optical Properties <i>173</i></p> <p>3.3.3 SnO2 Nanowires <i>175</i></p> <p>3.3.3.1 Synthesis <i>175</i></p> <p>3.3.3.2 Characterization <i>176</i></p> <p>3.3.3.3 Optical Properties <i>177</i></p> <p>3.3.4 NiO Nanowires <i>179</i></p> <p>3.3.4.1 Synthesis <i>179</i></p> <p>3.3.4.2 Characterization <i>179</i></p> <p>3.3.4.3 Structures <i>179</i></p> <p>3.3.4.4 Optical Properties <i>180</i></p> <p>3.3.5 Cr2O3 Nanowires <i>181</i></p> <p>3.3.5.1 Synthesis <i>182</i></p> <p>3.3.5.2 Characterization <i>182</i></p> <p>3.3.5.3 Structures <i>182</i></p> <p>3.3.5.4 Optical Properties <i>183</i></p> <p>3.4 Synthesis, Characterization, Electrochemical Properties, and Supercapacitor Applications of MoO3 Nanowires <i>185</i></p> <p>3.4.1 Synthesis <i>186</i></p> <p>3.4.2 Characterization <i>186</i></p> <p>3.4.3 Wastewater Treatment Experiment <i>187</i></p> <p>3.4.4 Electrochemical Measurement <i>187</i></p> <p>3.4.5 Structure <i>187</i></p> <p>3.4.6 Electrochemical Properties and Supercapacitor Applications <i>190</i></p> <p>3.4.7 Adsorption Properties for Removal of RhB <i>192</i></p> <p>3.5 Synthesis, Characterization, and Bioapplication of Hydroxyapatite (HAP) Nanorods <i>193</i></p> <p>3.5.1 Synthesis <i>194</i></p> <p>3.5.2 Characterization <i>194</i></p> <p>3.5.3 Cell Culture and Treatment <i>195</i></p> <p>3.5.4 MTT (Thiazolyl Blue) Assay <i>195</i></p> <p>3.5.5 Fluorescence Observation of HeLa Cells Stained by Hoechst 33342 <i>195</i></p> <p>3.5.6 Flow Cytometer Measurement <i>195</i></p> <p>3.5.7 Nanoindentation Test <i>196</i></p> <p>3.5.8 Structure <i>196</i></p> <p>3.5.9 Anticancer Activity <i>201</i></p> <p>3.5.10 Mechanical Strength <i>205</i></p> <p>3.6 Synthesis and Characterization of Sulfide (CdS) Nanowire Arrays <i>206</i></p> <p>3.6.1 Synthesis <i>206</i></p> <p>3.6.2 Characterization <i>207</i></p> <p>3.6.3 Structure <i>207</i></p> <p>3.7 Synthesis and Characterization of Fullerene (C70) Nanowires <i>208</i></p> <p>3.7.1 Synthesis <i>209</i></p> <p>3.7.2 Characterization <i>209</i></p> <p>References <i>211</i></p> <p><b>4 Synthesis, Characterization, and Applications of Two-Dimensional (2D) Graphene-Related Nanostructures </b><i>221</i></p> <p>4.1 General Remarks <i>221</i></p> <p>4.2 Synthesis, Characterization, and Applications of Graphene-Based</p> <p>Oxide Hybrid Nanostructures <i>221</i></p> <p>4.2.1 Co3O4@Reduced Graphene Oxide <i>221</i></p> <p>4.2.1.1 Synthesis <i>222</i></p> <p>4.2.1.2 Characterization <i>223</i></p> <p>4.2.1.3 Electrochemical Behavior Measurement <i>223</i></p> <p>4.2.1.4 Structure <i>224</i></p> <p>4.2.1.5 Electrochemical Properties <i>226</i></p> <p>4.2.2 Fe3O4@Reduced Graphene Oxide <i>227</i></p> <p>4.2.2.1 Synthesis <i>228</i></p> <p>4.2.2.2 Characterization <i>228</i></p> <p>4.2.2.3 Electrochemical Measurement <i>229</i></p> <p>4.2.2.4 Structure <i>229</i></p> <p>4.2.2.5 Magnetic Properties <i>233</i></p> <p>4.2.2.6 Electrochemical Properties and Application as Anode for LIBs <i>235</i></p> <p>4.2.3 SnO2-Polyaniline-Reduced Graphene Oxide in LIBs <i>240</i></p> <p>4.2.3.1 Synthesis <i>241</i></p> <p>4.2.3.2 Characterization <i>242</i></p> <p>4.2.3.3 Electrochemical Experiment <i>243</i></p> <p>4.2.3.4 Structure <i>243</i></p> <p>4.2.3.5 Electrochemical Properties and Applied as Anode for LIBs <i>246</i></p> <p>4.2.4 TiO2@Reduced Graphene Oxide <i>249</i></p> <p>4.2.4.1 Synthesis <i>250</i></p> <p>4.2.4.2 Characterization <i>250</i></p> <p>4.2.4.3 Electrochemical Measurement <i>250</i></p> <p>4.2.4.4 Structure <i>251</i></p> <p>4.2.4.5 Electrochemical Properties and Applied as Anode for LIBs <i>253</i></p> <p>4.2.5 Cu2O@Reduced Graphene Oxide <i>259</i></p> <p>4.2.5.1 Synthesis <i>259</i></p> <p>4.2.5.2 Characterization <i>259</i></p> <p>4.2.5.3 Adsorption Measurement <i>260</i></p> <p>4.2.5.4 Electrochemical Measurement <i>260</i></p> <p>4.2.5.5 Structure <i>261</i></p> <p>4.2.5.6 Removal of RhB <i>265</i></p> <p>4.2.5.7 Electrochemical Properties and Applied as Anode for LIBs <i>267</i></p> <p>4.2.6 ZnO@Reduced Graphene Oxide <i>269</i></p> <p>4.2.6.1 Synthesis <i>269</i></p> <p>4.2.6.2 Characterization <i>270</i></p> <p>4.2.6.3 Photocatalytic Property Measurement <i>270</i></p> <p>4.2.6.4 Structure <i>271</i></p> <p>4.2.6.5 Electrochemical Behavior <i>273</i></p> <p>4.2.6.6 Photocatalytic Properties <i>273</i></p> <p>4.2.7 Fe2O3@Reduced Graphene Oxide <i>276</i></p> <p>4.2.7.1 Synthesis <i>276</i></p> <p>4.2.7.2 Characterization <i>277</i></p> <p>4.2.7.3 Structure <i>277</i></p> <p>4.2.7.4 Magnetic Properties <i>281</i></p> <p>4.2.7.5 Removal of Rhodamine B Dye Molecules fromWater <i>283</i></p> <p>4.3 Synthesis, Characterization, and Applications of Graphene-Related Hydroxide Nanocomposites <i>285</i></p> <p>4.3.1 <i>;;</i>-Ni(OH)2@RGO <i>285</i></p> <p>4.3.1.1 Synthesis <i>286</i></p> <p>4.3.1.2 Characterization <i>286</i></p> <p>4.3.1.3 Electrochemical Measurement <i>287</i></p> <p>4.3.1.4 Nickel–MH Battery Performance Measurement <i>287</i></p> <p>4.3.1.5 LIB Performance Measurement <i>287</i></p> <p>4.3.1.6 Structure <i>288</i></p> <p>4.3.1.7 Electrochemical Properties and Applied in Ni-MH and LIBs <i>290</i></p> <p>4.3.2 Mg(OH)2@RGO <i>294</i></p> <p>4.3.2.1 Synthesis <i>294</i></p> <p>4.3.2.2 Characterization <i>294</i></p> <p>4.3.2.3 Adsorption of Dye fromWater <i>294</i></p> <p>4.3.2.4 Structure <i>295</i></p> <p>4.3.2.5 Applications <i>298</i></p> <p>4.4 Synthesis, Characterization, and Applications of Graphene-Related Sulfide (SnS2@RGO) Nanocomposites <i>301</i></p> <p>4.4.1 Synthesis <i>301</i></p> <p>4.4.2 Characterization <i>302</i></p> <p>4.4.3 Electrochemical Measurement <i>302</i></p> <p>4.4.4 Structure <i>303</i></p> <p>4.4.5 Applied as Anode Material for LIBs <i>307</i></p> <p>4.5 Synthesis, Characterization, and Applications of Graphene-Related</p> <p>Carbonate (MnCO3@RGO) Nanocomposites <i>314</i></p> <p>4.5.1 Synthesis <i>314</i></p> <p>4.5.2 Characterization <i>315</i></p> <p>4.5.3 Structure <i>316</i></p> <p>4.5.4 Applications as Anode for LIBs <i>320</i></p> <p>4.6 Synthesis, Characterization, and Applications of Graphene-Related Metal (Ni@RGO) Nanocomposites <i>324</i></p> <p>4.6.1 Synthesis <i>324</i></p> <p>4.6.2 Characterization <i>325</i></p> <p>4.6.3 Adsorption Measurement <i>325</i></p> <p>4.6.4 Electrochemical Measurement <i>326</i></p> <p>4.6.5 Structure <i>326</i></p> <p>4.6.6 Magnetic Properties <i>329</i></p> <p>4.6.7 Removal of MB <i>331</i></p> <p>4.6.8 Electrical Properties and Applied as Electrode for Supercapacitors <i>333</i></p> <p>4.7 Synthesis, Characterization, and Applications of Graphene-Related Organic Nanocomposites (AdenineModified Graphene, AMG) <i>334</i></p> <p>4.7.1 Synthesis <i>335</i></p> <p>4.7.2 Characterization <i>335</i></p> <p>4.7.3 Electrochemcial Measurement <i>336</i></p> <p>4.7.4 Structure <i>336</i></p> <p>4.7.5 Electrical Properties <i>341</i></p> <p>References <i>346</i></p> <p><b>5 Synthesis, Characterization, and Applications of Three-Dimensional (3D) Nanostructures </b><i>363</i></p> <p>5.1 General Remarks <i>363</i></p> <p>5.2 Synthesis, Characterization, and Application of 3D Oxide Nanostructures <i>363</i></p> <p>5.2.1 Boehmite Nanococoons <i>363</i></p> <p>5.2.1.1 Synthesis <i>364</i></p> <p>5.2.1.2 Characterization <i>364</i></p> <p>5.2.1.3 Structure <i>364</i></p> <p>5.2.1.4 Growth Mechanism <i>366</i></p> <p>5.2.1.5 CL Properties <i>367</i></p> <p>5.2.2 ZnO-CPP Nanostructures <i>368</i></p> <p>5.2.2.1 Synthesis <i>369</i></p> <p>5.2.2.2 Characterization <i>370</i></p> <p>5.2.2.3 Photocatalysis Experiment <i>370</i></p> <p>5.2.2.4 Water Contact Angle (CA) Measurement <i>370</i></p> <p>5.2.2.5 Structure <i>370</i></p> <p>5.2.2.7 Formation of ZnO from Zn-CPPs <i>376</i></p> <p>5.2.2.8 Superhydrophobicity <i>377</i></p> <p>5.2.2.9 Photocatalysis Properties <i>378</i></p> <p>5.2.3 Co3O4 3D Superstructures <i>379</i></p> <p>5.2.3.1 Synthesis <i>379</i></p> <p>5.2.3.2 Characterization <i>380</i></p> <p>5.2.3.3 Magnetic Behavior Measurement <i>380</i></p> <p>5.2.3.4 Catalytic Reaction <i>380</i></p> <p>5.2.3.5 Structure <i>381</i></p> <p>5.2.3.6 Optical Properties <i>381</i></p> <p>5.2.3.7 Growth Mechanism <i>384</i></p> <p>5.2.3.8 Magnetic Properties <i>386</i></p> <p>5.2.3.9 Applied as Peroxidase <i>388</i></p> <p>5.2.4 Mn2O3 3D Superstructures <i>395</i></p> <p>5.2.4.1 Synthesis <i>396</i></p> <p>5.2.4.2 Characterization <i>397</i></p> <p>5.2.4.3 Water Contact Angle (CA) Measurement <i>397</i></p> <p>5.2.4.4 Measurement of Magnetic Properties <i>397</i></p> <p>5.2.4.5 Structure <i>397</i></p> <p>5.2.4.6 Growth Mechanism <i>401</i></p> <p>5.2.4.7 Magnetic Properties <i>404</i></p> <p>5.2.4.8 Superhydrophobic Properties <i>407</i></p> <p>5.2.5 WO3 3D Snowflake-like Nanostructures <i>408</i></p> <p>5.2.5.1 Synthesis <i>409</i></p> <p>5.2.5.2 Characterization <i>409</i></p> <p>5.2.5.3 Water Contact Angle Measurement <i>409</i></p> <p>5.2.5.4 Photocatalytic Activity Test <i>409</i></p> <p>5.2.5.5 Electrochemical Measurement <i>410</i></p> <p>5.2.5.6 Growth Mechanism <i>410</i></p> <p>5.2.5.7 Structure <i>418</i></p> <p>5.2.5.8 Superhydrophobicity <i>420</i></p> <p>5.2.5.9 Photocatalytic Activity <i>421</i></p> <p>5.2.5.10 Improved Anode Performance for LIBs <i>425</i></p> <p>5.3 Synthesis, Characterization, and Application of 3D Hydroxide Nanostructures <i>429</i></p> <p>5.3.1 Ni(OH)2 3D Peonylike Superstructures <i>429</i></p> <p>5.3.1.1 Synthesis <i>429</i></p> <p>5.3.1.2 Characterization <i>429</i></p> <p>5.3.1.3 Electrochemical Properties Measurement <i>430</i></p> <p>5.3.1.4 Wetting Behavior Measurement <i>430</i></p> <p>5.3.1.5 Structure <i>430</i></p> <p>5.3.1.6 Growth Mechanism <i>433</i></p> <p>5.3.1.7 Electrochemical Properties <i>435</i></p> <p>5.3.1.8 Superhydrophobic Properties <i>437</i></p> <p>5.3.2 Mg(OH)2 3D Nanoflowers <i>438</i></p> <p>5.3.2.1 Synthesis <i>439</i></p> <p>5.3.2.2 Characterization <i>439</i></p> <p>5.3.2.3 Wetting Behavior Test <i>440</i></p> <p>5.3.2.4 Fire Test <i>440</i></p> <p>5.3.2.5 Mechanical Properties Test <i>440</i></p> <p>5.3.2.6 Thermogravimetric Analysis (TGA) <i>440</i></p> <p>5.3.2.7 Structure <i>440</i></p> <p>5.3.2.8 Growth Mechanism <i>441</i></p> <p>5.3.2.9 Hydrophobic Properties <i>445</i></p> <p>5.3.2.10 Flammability <i>446</i></p> <p>5.4 Synthesis, Characterization, and Application of 3D Sulfide (PbS) Nanostructures <i>450</i></p> <p>5.4.1 Synthesis <i>451</i></p> <p>5.4.2 Characterization <i>451</i></p> <p>5.4.3 Structure <i>451</i></p> <p>5.4.4 Growth Mechanism <i>458</i></p> <p>5.5 Synthesis, Characterization, and Application of 3D Selenide Nanostructures <i>460</i></p> <p>5.5.1 Ag2Se 3D Plate-like Nanostructures <i>460</i></p> <p>5.5.1.1 Synthesis <i>461</i></p> <p>5.5.1.2 Characterization <i>461</i></p> <p>5.5.1.3 Photocatalytic Activity Test <i>461</i></p> <p>5.5.1.4 Wetting Behavior Test <i>462</i></p> <p>5.5.1.5 Structure <i>462</i></p> <p>5.5.1.6 Growth Mechanism <i>464</i></p> <p>5.5.1.7 Optical Properties <i>465</i></p> <p>5.5.1.8 Photocatalytic Properties <i>466</i></p> <p>5.5.1.9 Superhydrophobic Properties <i>470</i></p> <p>5.5.2 PbSe 3D Dendrite-like Nanostructures <i>472</i></p> <p>5.5.2.1 Synthesis <i>473</i></p> <p>5.5.2.2 Characterization <i>473</i></p> <p>5.5.2.3 Water Contact Angle (CA) Measurement <i>474</i></p> <p>5.5.2.4 Structure <i>474</i></p> <p>5.5.2.5 Growth Mechanism <i>476</i></p> <p>5.5.2.6 PL Properties <i>478</i></p> <p>5.5.2.7 Superhydrophobic Properties <i>478</i></p> <p>5.6 Synthesis, Characterization, and Application of 3D Carbonate Nanostructures <i>481</i></p> <p>5.6.1 CaCO3 3D Superstructures <i>481</i></p> <p>5.6.1.1 Synthesis <i>482</i></p> <p>5.6.1.2 Surface Modification <i>482</i></p> <p>5.6.1.3 Characterization <i>482</i></p> <p>5.6.1.4 Structure <i>482</i></p> <p>5.6.1.5 Growth Mechanism <i>486</i></p> <p>5.6.1.6 Wettability <i>488</i></p> <p>5.6.2 BaCO3 3D Superstructures <i>490</i></p> <p>5.6.2.1 Synthesis <i>490</i></p> <p>5.6.2.2 Characterization <i>491</i></p> <p>5.6.2.3 Water Contact Angle (CA) Measurement <i>491</i></p> <p>5.6.2.4 Structure <i>491</i></p> <p>5.6.2.5 Growth Mechanism <i>494</i></p> <p>5.6.2.6 Wettability <i>494</i></p> <p>5.6.3 MgCO3⋅3H2O Viburnum Opulus-Like 3D Superstructures <i>496</i></p> <p>5.6.3.1 Synthesis <i>496</i></p> <p>5.6.3.2 Characterization <i>496</i></p> <p>5.6.3.3 Water Contact Angle (CA) Measurement <i>497</i></p> <p>5.6.3.4 Water Treatment Experiment <i>497</i></p> <p>5.6.3.5 Structure <i>497</i></p> <p>5.6.3.6 Growth Mechanism <i>502</i></p> <p>5.6.3.7 Superhydrophobic Properties <i>504</i></p> <p>5.6.3.8 Adsorption Ability <i>504</i></p> <p>References <i>505</i></p> <p><b>6 Summary </b><i>521</i></p> <p><b>Index </b><i>525</i></p>
Huaqiang Cao obtained his Ph. D degree from Nanjing University, China, in 2001, and now is full Professor at Tsinghua University, China. His research interests are in material chemistry, focusing on the design and synthesis of inorganic nanomaterials with different dimensions, and understanding the synthesis-structure-application relationships. In 2015 he was elected as fellow of the Royal Society of Chemistry (FRSC) and fellow of the Institute of Materials, Minerals, and Mining (FIMMM).

Diese Produkte könnten Sie auch interessieren:

Multiple Bonds between Metal Atoms
Multiple Bonds between Metal Atoms
von: F. Albert Cotton, Carlos A. Murillo, Richard A. Walton
PDF ebook
287,83 €
Nanotechnology for Environmental Remediation
Nanotechnology for Environmental Remediation
von: Sung Hee Joo, Frank Cheng
PDF ebook
96,29 €
Binary Rare Earth Oxides
Binary Rare Earth Oxides
von: G. Adachi, Nobuhito Imanaka, Z.C. Kang
PDF ebook
160,49 €