Details

Trends and Applications in Advanced Polymeric Materials


Trends and Applications in Advanced Polymeric Materials


1. Aufl.

von: Sanjay K. Nayak, Smita Mohanty, Lakshmi Unnikrishnan

171,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 09.10.2017
ISBN/EAN: 9781119364788
Sprache: englisch
Anzahl Seiten: 330

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>This comprehensive compilation of contemporary research initiatives in polymer science & technology details the advancement in the fields of coatings, sensors, energy harvesting and gas transport.</b></p> <p>Polymers are the most versatile material and used in all industrial sectors because of their light weight, ease of processing and manufacturing, the ability to mold into intricate shapes, and its cost-effectiveness. They can easily be filled with a range of reinforcing agents like fibers, particulates, flakes and spheres in micro/nano sizes and compete with conventional materials in terms of performance, properties and durability. Polymers continue to be discovered and the demand for them is increasing.</p> <p>The book comprises a series of chapters outlining recent developments in various high performance applications of Advanced Polymeric Materials. The topics covered encompass specialized applications of polymeric matrices, their blends, composites and nanocomposites pertaining to smart & high performance coatings, high barrier packaging, solar energy harvesting, power generation using polymers, polymer sensors, conducting polymers, gas transport membranes and smart drug delivery systems.</p> <p>Thus, the theme of the book embraces all the latest innovations and future applications of polymers and related materials. What is novel about this book is that it delineates the applications from a research point of view through descriptions highlighting specific developmental criteria.</p>
<p>Preface xv</p> <p><b>1 Polymer Nanocomposites and Coatings: The Game Changers 1<br /></b><i>Gaurav Verma</i></p> <p>1.1 Introduction 1</p> <p>1.2 Polymer Nanocomposites 4</p> <p>1.2.1 Types of Polymer Nanocomposites: Processing 4</p> <p>1.2.1.1 Equipment and Processing 7</p> <p>1.2.2 Polymer Property Enhancements 9</p> <p>1.2.3 Polymer Nanocomposite Structure and Morphology 10</p> <p>1.2.4 Characterization of Polymer Nanocomposites 11</p> <p>1.2.4.1 Morphological Testing 12</p> <p>1.2.4.2 Spectral Testing 14</p> <p>1.2.4.3 Testing 15</p> <p>1.2.5 Applications 16</p> <p>1.2.5.1 Nanocomposite Coatings: Focus PU-Clay Coatings 17</p> <p>1.3 Conclusions 18</p> <p>Acknowledgments 19</p> <p>References 19</p> <p><b>2 DGEBA Epoxy/CaCO<sub>3</sub> Nanocomposites for Improved Chemical Resistance and Mechanical Properties for Coating Applications 23<br /></b><i>Manoj Kumar Shukla, Archana Mishra, Kavita Srivastava, A K Rathore and Deepak Srivastava</i></p> <p>2.1 Introductıon 24</p> <p>2.2 Experimental 26</p> <p>2.2.1 Preparation of Epoxy/CaCO<sub>3</sub> Nanocomposites 26</p> <p>2.2.2 Preparation of Panels 27</p> <p>2.2.3 Preparation of Reagents for Chemical Resistance 27</p> <p>2.2.3.1 Artificial Seawater (ASW) 27</p> <p>2.2.4 Preparation of Films 28</p> <p>2.3 Characterization of Epoxy/CaCO<sub>3</sub> Nanocomposite 28</p> <p>2.3.1 Fourier Transform Infrared (FTIR) Spectra 28</p> <p>2.3.2 Mechanical Properties 28</p> <p>2.3.2.1 Impact Resistance 28</p> <p>2.3.2.2 Scratch Hardness 29</p> <p>2.3.2.3 Adhesion and Flexibility Test 29</p> <p>2.3.2.4 Chemical Resistance Test 29</p> <p>2.3.2.5 Morphological Properties 29</p> <p>2.4 Results and Discussion 30</p> <p>2.4.1 FTIR Spectroscopic Analysis 30</p> <p>2.4.2 Studies on Mechenical Properties 32</p> <p>2.4.2.1 Impact Resistance 32</p> <p>2.4.2.2 Studies of Scratch Hardness 35</p> <p>2.4.2.3 Adhesion and Flexibility Test (Mandrel Bend Test) 36</p> <p>2.4.3 Studies on Chemical Resistance 37</p> <p>2.4.4 Morphological Studies 38</p> <p>2.5 Conclusıon 41</p> <p>References 42</p> <p><b>3 An Industrial Approach to FRLS (Fire Retardant Low Smoke) Compliance in Epoxy Resin-Based Polymeric Products 45<br /></b><i>Hari R and Sukumar Roy</i></p> <p>3.1 Introduction 46</p> <p>3.1.1 Incorporation of Additives 47</p> <p>3.2 Experimental 49</p> <p>3.3 Characterizatıon, Results and Discussion 53</p> <p>3.4 Conclusion 57</p> <p>Acknowledgments 58</p> <p>References 58</p> <p><b>4 Polymer-Based Organic Solar Cell: An Overview 59<br /></b><i>Neha Patni, Pranjal Sharma, Mythilypriya Suresh, Birendrakumar Tiwari and Shibu G. Pillai</i></p> <p>4.1 Introduction 60</p> <p>4.2 Polymer Solar Cells: An Insight 61</p> <p>4.2.1 Why Polymer Solar Cells are Preferable 62</p> <p>4.3 Layer Stack Constructıon of Polymer Solar Cells 62</p> <p>4.4 Simple Working of a Polymer Solar Cell 63</p> <p>4.5 Life-Cycle Analysis (LCA) 63</p> <p>4.6 Current Condition of Polymer Solar Cells 64</p> <p>4.7 Materials Used for Developing PSC 65</p> <p>4.7.1 Synthesis of Polymer Materials 65</p> <p>4.7.1.1 Stille Cross-Coupling 66</p> <p>4.7.1.2 Suzuki Cross-Coupling 66</p> <p>4.7.1.3 Direct Arylation Polymerization 66</p> <p>4.7.1.4 Polymerization Rates 67</p> <p>4.7.2 Conjugated Polymers 67</p> <p>4.7.3 Side-Chain Influence in Polymers 68</p> <p>4.7.4 Purification 69</p> <p>4.8 Degradation and Stability of a PSC 69</p> <p>4.8.1 Physical Degradation 69</p> <p>4.8.1.1 Morphological Stability 69</p> <p>4.8.1.2 Flexibility and Delamination 70</p> <p>4.8.2 Chemical Degradation 70</p> <p>4.8.2.1 Polymer Instability 70</p> <p>4.8.2.2 Photochemical Degradation 71</p> <p>4.9 Dyes 72</p> <p>4.9.1 Natural Dyes Used for Polymer Solar Cells 73</p> <p>4.10 Performed Experiments 75</p> <p>4.10.1 Experimental Setup 1 75</p> <p>4.10.2 Experimental Setup 2 77</p> <p>4.11 Summary 78</p> <p>References 79</p> <p><b>5 A Simple Route to Synthesize Nanostructures of Bismuth Oxyiodide and Bismuth Oxychloride (BiOI/BiOCl) Composite for Solar Energy Harvesting 83<br /></b><i>I. D. Sharma, Chander Kant, A. K. Sharma, Ravi Ranjan Pandey and K. K. Saini</i></p> <p>5.1 Introduction 83</p> <p>5.1.1 Bismuth Oxyhalide [BiOX (X = Cl, Br, I )]:General Remarks 87</p> <p>5.1.2 Synthesis of Bismuth Oxyhalide 89</p> <p>5.2 Photocatalytic Activity Measurements 91</p> <p>5.3 Results and Discussion 91</p> <p>5.4 Conclusion 96</p> <p>Acknowledgments 97</p> <p>References 98</p> <p><b>6 Investigation of DC Conductivity, Conduction Mechanism and CH<sub>4</sub> Gas Sensor of Chemically Synthesized Polyaniline Nanofiber Deposited on DL-PLA Substrate 101<br /></b><i>Muktikanta Panigrahi, Debabrat Pradhan, Subhasis Basu Majumdar and Basudam Adhikari</i></p> <p>6.1 Introduction 102</p> <p>6.2 Experimental Details 104</p> <p>6.2.1 Preparation of Desired Materials 104</p> <p>6.2.2 Characterization of DL-PLA Films and DL-PLA/PANI-ES Composites 105</p> <p>6.3 Results and Discussion 106</p> <p>6.3.1 Scanning Electron Microscopic (SEM) Analysis 106</p> <p>6.3.2 Attenuated Total Reflectance Fourier Transformation Infrared (ATR-FTIR) Spectroscopic Analysis 107</p> <p>6.3.3 Ultraviolet Visible (UV-Vis) Absorption Spectroscopic Analysis 109</p> <p>6.3.4 DC Electrical Analysis 111</p> <p>6.4 Conclusion 120</p> <p>Acknowledgments 121</p> <p>References 121</p> <p><b>7 Electrical Properties of Conducting Polymer-MWCNT Binary and Hybrid Nanocomposites 127<br /></b><i>B.T.S. Ramanujam and S. Radhakrishnan</i></p> <p>7.1 Introduction 128</p> <p>7.1.1 Theoretical Background of Electrical Conductivity in CPCs 129</p> <p>7.1.2 Factors Affecting Electrical Percolation Threshold 129</p> <p>7.1.3 Processing Methods of CPCs 130</p> <p>7.1.4 Conduction Mechanism in CPCs 130</p> <p>7.1.5 Multiwalled Carbon Nanotube (MWCNT) – Potential Conducting Filler 131</p> <p>7.1.5.1 Synthesis Methods of Carbon Nanotubes 132</p> <p>7.1.6 Electrical Properties of Polymer-MWCNT Composites 134</p> <p>7.2 AC/DC Properties of Polyethersulfone (PES)-MWCNT, PES-Graphite-MWCNT Nanocomposites 135</p> <p>7.2.1 Material Properties 135</p> <p>7.2.2 Composite Preparation 135</p> <p>7.3 Discussion of Results 136</p> <p>7.3.1 Electrical Behavior of Polyethersulfone (PES)-MWCNT Binary and PES-Graphite-MWCNT Hybrid Composites 136</p> <p>7.3.2 Transmission Electron Microscopy (TEM) Analysis 138</p> <p>7.4 Conclusion and Future Perspectives 139</p> <p>Acknowledgment 141</p> <p>References 141</p> <p><b>8 Polyaniline-Based Sensors for Monitoring and Detection of Ammonia and Carbon Monoxide Gases 145<br /></b><i>Neha Patni, Neha Jain and Shibu G. Pillai</i></p> <p>8.1 Introduction 145</p> <p>8.2 Conducting Polymers 146</p> <p>8.2.1 Polyaniline 147</p> <p>8.2.1.1 Structure of Polyaniline 148</p> <p>8.2.1.2 Properties of Polyaniline 148</p> <p>8.3 Ammonia Detection 149</p> <p>8.3.1 Sources of Ammonia 149</p> <p>8.3.2 Experiment: Ammonia Sensor 153</p> <p>8.4 Carbon Monoxide (CO) Detection 154</p> <p>8.4.1 Common Sources of CO 154</p> <p>8.4.2 Sensors Used for Detection of CO 155</p> <p>8.5 Conclusion 158</p> <p>References 159</p> <p><b>9 Synthesis and Characterization of Luminescent La<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>/Sm<sup>3+</sup> Polymer Nanocomposites 163<br /></b><i>Pramod Halappa and C. Shivakumara</i></p> <p>9.1 Introduction 164</p> <p>9.1.1 Luminescence 165</p> <p>9.1.2 Photoluminescence 165</p> <p>9.1.2.1 Fluorescence 165</p> <p>9.1.2.2 Delayed Fluorescence or Phosphorescence 167</p> <p>9.1.2.3 Jablonski Diagram 167</p> <p>9.1.2.4 Phosphors 169</p> <p>9.1.2.5 Photoluminescence of Samarium Ion (Sm<sup>3+</sup>) 173</p> <p>9.1.3 Scope and Objectives of the Present Study 173</p> <p>9.2 Experimental 175</p> <p>9.2.1 Synthesis of Sm<sup>3+</sup>-Doped La<sub>2</sub>Zr<sub>2</sub>O7 175</p> <p>9.2.2 Preparation of PVA Polymer Thin Films 176</p> <p>9.2.3 Preparation of Sm<sup>3+</sup>-Doped La<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub> with PVA-Polymer Composite Films 177</p> <p>9.2.4 Characterization 177</p> <p>9.3 Results and Discussıon 178</p> <p>9.3.1 Structural Analysis by X-Ray Diffraction 178</p> <p>9.3.2 SEM Analysis 181</p> <p>9.3.3 UV-Vis Spectroscopy 181</p> <p>9.3.4 Thermogravimetric Analysis (TGA) 181</p> <p>9.3.5 Photoluminescence Properties 182</p> <p>9.3.6 Chromaticity Color Coordinates 184</p> <p>9.4 Conclusion 186</p> <p>Aknowledgment 186</p> <p>References 186</p> <p><b>10 Study of Gas Transport Phenomenon in Layered Polymer Nanocomposite Membranes 191<br /></b><i>A.K. Patel and N.K. Acharya</i></p> <p>10.1 Introduction 192</p> <p>10.1.1 Transport Phenomenon 193</p> <p>10.1.2 Metal Coating 196</p> <p>10.2 Experimental 196</p> <p>10.2.1 Fabrication of Nanocomposite Membrane 196</p> <p>10.2.2 Gas Permeability Test 197</p> <p>10.3 Results and Discussion 199</p> <p>10.4 Conclusion 203</p> <p>Acknowledgment 203</p> <p>References 204</p> <p><b>11 Synthesis and Ion Transport Studies of K<sup>+</sup> Ion Conducting Nanocomposite Polymer Electrolytes 207<br /></b><i>Angesh Chandra, Alok Bhatt and Archana Chandra</i></p> <p>11.1 Introduction 208</p> <p>11.2 Experimental 209</p> <p>11.3 Results and Discussion 210</p> <p>11.4 Conclusion 216</p> <p>Acknowledgment 217</p> <p>References 217</p> <p><b>12 Recent Studies in Polyurethane-Based Drug Delivery Systems 219<br /></b><i>Archana Solanki and Sonal Thakore</i></p> <p>12.1 Introduction 219</p> <p>12.1.1 Polyurethane Chemistry: A Brief Overview 219</p> <p>12.1.2 Carbohydrate Cross-Linked Polyurethanes 227</p> <p>12.1.3 Biomedical Applications of PUs 229</p> <p>12.2 Experimental 232</p> <p>12.2.1 Impact of PU Chemistry on Drug Delivery Profiles 232</p> <p>12.2.2 Drug Loading and Release Kinetics 235</p> <p>12.2.3 Waterborne pH-Responsive Polyurethanes 236</p> <p>12.3 Conclusion 240</p> <p>References 240</p> <p><b>13 Synthesis and Characterization of Polymeric Hydrogels for Drug Release Formulation and Its Comparative Study 245<br /></b><i>Nisarg K. Prajapati, Nirmal K. Patel and Vijay Kumar Sinha</i></p> <p>13.1 Introduction 246</p> <p>13.2 Materials and Method 246</p> <p>13.2.1 Preparation of Sodium Salt of Partly Carboxylic Propyl Starch (Na-PCPS) 246</p> <p>13.2.2 Preparation of 2-Hydroxy-3-((2-hydroxypropanoyl)oxy)propyl acrylate 247</p> <p>13.2.3 Graft Copolymerization with PCPS-g-2-hydroxy-3-((2-hydroxypropanoyl)oxy) propyl acrylate (HPA) 247</p> <p>13.2.4 Drug Loading in Polymeric Binder 248</p> <p>13.2.5 Preparation of Matrix Tablets 249</p> <p>13.2.6 <i>In-Vitro </i>Dissolution Studies of Tablet 250</p> <p>13.3 Result and Discussion 250</p> <p>13.3.1 13C-NMR Spectra Analysis of 2-Hydroxy-3-((2-hydroxypropanoyl)oxy) propyl acrylate 250</p> <p>13.3.2 XRD Analysis of Starch, CPS, PCPS-g-2-hydroxy-3-((2-hydroxypropanoyl)oxy) propyl acrylate (HPA) 250</p> <p>13.3.3 <i>In-Vitro </i>Study 251</p> <p>13.4 Conclusion 253</p> <p>Acknowledgment 253</p> <p>References 253</p> <p><b>14 Enhancement in Gas Diffusion Barrier Property of Polyethylene by Plasma Deposited SiO<sub>x</sub> Films for Food Packaging Applications 255<br /></b>Purvi Dave, Nisha Chandwani, S. K. Nema and S. Mukherji 255</p> <p>14.1 Introduction 256</p> <p>14.2 Transport of Gas Molecules Through Packaging Polymers 258</p> <p>14.2.1 Packaging Polymer Struture 258</p> <p>14.2.2 Transport of Gas Molecules Through Semicrystalline Polymer Films 258</p> <p>14.2.3 Measurement of Gas Transmission Rate Through a Packaging Film 260</p> <p>14.3 Experimental 261</p> <p>14.3.1 Contact Angle Measurements to Determine Film Wetting Properties 262</p> <p>14.3.2 FTIR-ATR Study to Determine Film Chemistry 262</p> <p>14.3.3 Film Thickness Measurement 262</p> <p>14.3.4 High Resolution Scanning Electron Microscopy to Determine Film Morphology 262</p> <p>14.3.5 OTR Measurement to Determine Oxygen Diffusion Barrier Property 263</p> <p>14.4 Results 263</p> <p>14.4.1 Observations 263</p> <p>14.4.1.1 Wetting Behavior of SiO<sub>x</sub> Films 263</p> <p>14.4.1.2 Chemistry of SiO<sub>x</sub> Film 264</p> <p>14.4.1.3 Deposition Rate 264</p> <p>14.4.1.4 High Resolution Scanning Electron Microscopy 265</p> <p>14.4.1.5 Oxygen Transmission Rate 267</p> <p>14.4.2 Discussion 267</p> <p>14.5 Conclusion 271</p> <p>References 272</p> <p><b>15 Synthesis and Characterization of Nanostructured Olivine LiFePO<sub>4</sub> Electrode Material for Lithium-Polymer Rechargeable Battery 275<br /></b><i>K. Rani, M. Abdul Kader and S. Palaniappan</i></p> <p>15.1 Introduction 276</p> <p>15.1.1 Energy Storage: Rechargeable Batteries 276</p> <p>15.1.1.1 Lithium Battery 278</p> <p>15.1.1.2 Comparison between Li-Polymer Battery and Liquid Battery 279</p> <p>15.1.1.3 Commercial Production 280</p> <p>15.1.1.4 Advantages of Lithium Polymer Batteries 281</p> <p>15.1.1.5 Limitations of Lithium-Polymer Batteries 282</p> <p>15.1.2 Cell Manufacturers Using Lithium Iron Phosphate 282</p> <p>15.1.3 Lithium Iron Phosphate (LiFePO<sub>4</sub>) 284</p> <p>15.1.3.1 Synthesis of LiFePO<sub>4</sub> 286</p> <p>15.1.3.2 Structure of LiFePO<sub>4</sub> 287</p> <p>15.1.3.3 Work on LiFePO<sub>4</sub> Cell Systems 290</p> <p>15.2 Experimental 292</p> <p>15.2.1 Synthesis 292</p> <p>15.3 Characterization 292</p> <p>15.4 Results and Discussion 293</p> <p>15.4.1 Morphology 293</p> <p>15.4.2 E-DAX 294</p> <p>15.4.3 Charge-Discharge Characteristics 294</p> <p>15.4.4 XRD Studies on LiFePO<sub>4</sub> 295</p> <p>15.5 Conclusion 296</p> <p>Acknowledgments 297</p> <p>References 298</p> <p>Index 305</p>
<p><b>S. K. Nayak</b> holds the position of Director General, Central Institute of Plastics Engineering & Technology (CIPET) as well as Prof. & Chair of R&D wings of CIPET. He is an active researcher in the field of polymer science & technology and has authored several textbooks on novel technological developments and is the Editor-in-Chief of <i>International Journal of Plastics Technology (IJPT).</i></p> <p><b>Smita Mohanty</b> is the Senior Scientist and In-charge of the Laboratory for Advanced Research in Polymeric Materials (the R&D wing of CIPET), with more than 12 years of research and teaching experience. She has published ~150 papers in major international journals and has 5 Indian patents to her credit. <p><b>Lakshmi Unnikrishnan</b> is working as a Scientist at LARPM. She has published 15 papers in major international journals and her major area of research includes polymer electrolyte membranes, piezoelectric membrane systems, membrane separators, biosensors and conductive composites.
<p><b>This comprehensive compilation of contemporary research initiatives in polymer science & technology details the advancement in the fields of coatings, sensors, energy harvesting and gas transport.</b></p> <p>Polymers are the most versatile material and used in all industrial sectors because of their light weight, ease of processing and manufacturing, the ability to mold into intricate shapes, and its cost-effectiveness. They can easily be filled with a range of reinforcing agents like fibers, particulates, flakes and spheres in micro/nano sizes and compete with conventional materials in terms of performance, properties and durability. Polymers continue to be discovered and the demand for them is increasing. <p>The book comprises a series of chapters outlining recent developments in various high performance applications of Advanced Polymeric Materials. The topics covered encompass specialized applications of polymeric matrices, their blends, composites and nanocomposites pertaining to smart & high performance coatings, high barrier packaging, solar energy harvesting, power generation using polymers, polymer sensors, conducting polymers, gas transport membranes and smart drug delivery systems. <p>Thus, the theme of the book embraces all the latest innovations and future applications of polymers and related materials. What is novel about this book is that it delineates the applications from a research point of view through descriptions highlighting specific developmental criteria. <p><b>Audience</b><BR>The book serves as a reference for all those industry polymer scientists and academic researchers required or interested in updating themselves on recent innovations. It will be exceedingly useful for engineers and students as the book acts as a practical guide for forward-looking research. Industrialists and entrepreneurs will also benefit by understanding the industrially viable technology from the novel techniques presented in the book.

Diese Produkte könnten Sie auch interessieren:

Chemistry for the Protection of the Environment 4
Chemistry for the Protection of the Environment 4
von: Robert Mournighan, Marzenna R. Dudzinska, John Barich, Marjorie A. Gonzalez, Robin K. Black
PDF ebook
213,99 €
Wörterbuch Labor / Laboratory Dictionary
Wörterbuch Labor / Laboratory Dictionary
von: Klaus Roth, Theodor C.H. Cole
PDF ebook
36,99 €