Details

2D Monoelements


2D Monoelements

Properties and Applications
1. Aufl.

von: Inamuddin, Rajender Boddula, Mohd Imran Ahamed, Abdullah M. Asiri

173,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 25.11.2020
ISBN/EAN: 9781119655282
Sprache: englisch
Anzahl Seiten: 352

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><i>2D Monoelements: Properties and Applications</i> explores the challenges, research progress and future developments of the basic idea of two-dimensional monoelements, classifications, and application in field-effect transistors for sensing and biosensing.</p> <p>The thematic topics include investigations such as:</p> <ul> <li>Recent advances in phosphorene</li> <li>The diverse properties of two-dimensional antimonene, of graphene and its derivatives</li> <li>The molecular docking simulation study used to analyze the binding mechanisms of graphene oxide as a cancer drug carrier</li> <li>Metal-organic frameworks (MOFs)-derived carbon (graphene and carbon nanotubes) and MOF-carbon composite materials, with a special emphasis on the use of these nanostructures for energy storage devices (supercapacitors)</li> <li>Two-dimensional monoelements classification like graphene application in field-effect transistors for sensing and biosensing</li> <li>Graphene-based ternary materials as a supercapacitor electrode</li> <li>Rise of silicene and its applications in gas sensing</li> </ul>
<p>Preface xiii</p> <p><b>1 Phosphorene: A 2D New Derivative of Black Phosphorous 1<br /></b><i>Lalla Btissam Drissi, Siham Sadki and El Hassan Saidi</i></p> <p>1.1 Introduction 1</p> <p>1.2 Pristine 2D BP 3</p> <p>1.2.1 Synthesis and Characterization 3</p> <p>1.2.1.1 Top-Down Approaches 3</p> <p>1.2.1.2 Bottom-Up Methods 4</p> <p>1.2.1.3 Geometric Structure and Raman Spectroscopy 4</p> <p>1.2.2 Physical Properties 5</p> <p>1.2.2.1 Anisotropic Eectronic Behavior 5</p> <p>1.2.2.2 Optical Properties 6</p> <p>1.2.2.3 Elastic Parameters 8</p> <p>1.2.3 Applications 9</p> <p>1.2.3.1 Gas Sensors 9</p> <p>1.2.3.2 Battery Applications 9</p> <p>1.2.3.3 FETs 10</p> <p>1.3 Phosphorene Oxides 10</p> <p>1.3.1 Challenges: Degradation of Phosphorene 11</p> <p>1.3.1.1 Light Exposure 11</p> <p>1.3.1.2 Phosphorene vs Air 12</p> <p>1.3.1.3 Functionalized Phosphorene 12</p> <p>1.3.2 Half-Oxided Phosphorene 13</p> <p>1.3.2.1 Electronic Structure 14</p> <p>1.3.2.2 Optical Response 15</p> <p>1.3.2.3 Strain Effect 16</p> <p>1.3.3 Surface Oxidation on Phosphorene 18</p> <p>1.3.3.1 Optoelectronic Features 18</p> <p>1.3.3.2 Stress vs Strain 20</p> <p>1.3.3.3 Thermal Conductivity 21</p> <p>1.4 Conclusion 22</p> <p>Acknowledgment 22</p> <p>References 22</p> <p><b>2 Antimonene: A Potential 2D Material 27<br /></b><i>Shuai Liu, Tianle Zhang and Shengxue Yang</i></p> <p>2.1 Introduction 27</p> <p>2.2 Fundamental Characteristics 29</p> <p>2.2.1 Structure 29</p> <p>2.2.2 Electronic Band Structure 30</p> <p>2.3 Experimental Preparation 30</p> <p>2.3.1 Mechanical Exfoliation 30</p> <p>2.3.2 Liquid Phase Exfoliation 32</p> <p>2.3.3 Epitaxial Growth 35</p> <p>2.3.4 Other Methods 40</p> <p>2.4 Applications of Antimonene 40</p> <p>2.4.1 Nonlinear Optics 40</p> <p>2.4.2 Optoelectronic Device 42</p> <p>2.4.3 Electrocatalysis 44</p> <p>2.4.4 Energy Storage 45</p> <p>2.4.5 Biomedicine 47</p> <p>2.4.6 Magneto-Optic Storage 50</p> <p>2.5 Conclusion and Outlook 50</p> <p>References 52</p> <p><b>3 Synthesis and Properties of Graphene-Based Materials 57<br /></b><i>U. Naresh, N. Suresh Kumar, D. Baba Basha, Prasun Benerjee, K. Chandra Babu Naidu, R. Jeevan Kumar, Ramyakrishna Pothu and Rajender Boddula</i></p> <p>3.1 Introduction 58</p> <p>3.2 Applications 60</p> <p>3.3 Structure 62</p> <p>3.3.1 Graphene-Related Materials 63</p> <p>3.3.2 Synthesis Techniques 64</p> <p>3.3.3 Mechanical Exfoliation of Graphene Layers 64</p> <p>3.3.4 Chemical Vapor Deposition of Graphene Layers 65</p> <p>3.3.5 Hummer Method of Graphene 65</p> <p>3.3.6 Plasma-Enhanced Chemical Vapor Deposition of Graphene Layers 65</p> <p>3.4 Physical Properties 66</p> <p>3.4.1 Thermal Stability 66</p> <p>3.4.2 Electronic Properties 67</p> <p>3.5 Conclusions 68</p> <p>References 69</p> <p><b>4 Theoretical Study on Graphene Oxide as a Cancer Drug Carrier 73<br /></b><i>Satya Narayan Sahu, Saraswati Soren, Shanta Chakrabarty and Rojalin Sahu</i></p> <p>4.1 Introduction 74</p> <p>4.2 Molecular Interaction of Biomolecules and Graphene Oxide 76</p> <p>4.2.1 Molecular Interaction of DNA with Graphene Oxide 76</p> <p>4.2.2 Molecular Interaction of Protein with Graphene Oxide 77</p> <p>4.3 Computational Method 78</p> <p>4.4 Results and Discussion 79</p> <p>4.4.1 Binding Behavior Between Graphene Oxide With Cancer Drugs (5-Flourouracil, Ibuprofen, Camptothecine, and Doxorubicin) 79</p> <p>4.5 Conclusion 83</p> <p>References 83</p> <p><b>5 High-Quality Carbon Nanotubes and Graphene Produced from MOFs and Their Supercapacitor Application 87<br /></b><i>Mandira Majumder, Ram B. Choudhary, Anukul K. Thakur, Rabah Boukherroub and Sabine Szunerits</i></p> <p>5.1 Introduction 88</p> <p>5.1.1 The Basics of Metal Organic Frameworks (MOFs) 91</p> <p>5.2 Carbonization of MOFs 92</p> <p>5.2.1 Conversion of MOFs Into Carbon Nanotubes (CNTs) 93</p> <p>5.2.2 MOFs Derived Graphene Like Carbon and Graphene-Based Composites 94</p> <p>5.2.3 MOFs Precursors for the Preparation of Porous Carbon Nanostructures Other Than Graphene and CNTs 95</p> <p>5.3 Effect of MOF Pyrolysis Temperature on Porosity and Pore Size Distribution 96</p> <p>5.4 MOF Derived Carbon as Supercapacitor Electrodes 98</p> <p>5.5 Conclusions and Perspectives 107</p> <p>Acknowledgement 108</p> <p>References 109</p> <p><b>6 Application of Two-Dimensional Monoelements–Based Material in Field-Effect Transistor for Sensing and Biosensing 119<br /></b><i>Tejaswini Sahoo, Jnana Ranjan Sahu, Jagannath Panda, Neeraj Kumari and Rojalin Sahu</i></p> <p>6.1 Introduction 120</p> <p>6.1.1 Classification of 2D Monoelement (Xenes) in the Periodic Table 121</p> <p>6.1.2 Group III 121</p> <p>6.1.2.1 Borophene 123</p> <p>6.1.2.2 Gallenene 123</p> <p>6.1.3 Group IV 126</p> <p>6.1.3.1 Silicene 126</p> <p>6.1.3.2 Germanene 126</p> <p>6.1.3.3 Stanene 126</p> <p>6.1.4 Group V 126</p> <p>6.1.4.1 Phosphorene 126</p> <p>6.1.4.2 Arsenene 127</p> <p>6.1.4.3 Antimonene 127</p> <p>6.1.4.4 Bismuthene 127</p> <p>6.1.5 Group VI 127</p> <p>6.1.5.1 Selenene 127</p> <p>6.1.5.2 Tellurene 128</p> <p>6.2 Field-Effect Transistor 128</p> <p>6.2.1 Different Types of Recently Developed Field-Effect Transistors 129</p> <p>6.2.1.1 Field-Effect Transistors Based on Silicon 129</p> <p>6.2.1.2 Field-Effect Transistors Based on Carbon Nanotube 129</p> <p>6.2.1.3 Organic Field-Effect Transistors 130</p> <p>6.2.1.4 Field-Effect Transistors Based on Graphene 130</p> <p>6.3 Application of 2D Monoelements in Field-Effect Transistor for Sensing and Biosensing 130</p> <p>6.3.1 Biosensor 130</p> <p>6.3.1.1 DNA Sensors 133</p> <p>6.3.1.2 Protein Sensors 133</p> <p>6.3.1.3 Glucose Sensor 134</p> <p>6.3.1.4 Living Cell and Bacteria Sensors 134</p> <p>6.3.2 Sensor 135</p> <p>6.3.2.1 Gas Sensor 135</p> <p>6.3.2.2 pH Sensor 136</p> <p>6.3.2.3 Metal Ion and Other Chemical Sensors 137</p> <p>6.4 Conclusions and Perspectives 138</p> <p>References 139</p> <p><b>7 Supercapacitor Electrodes Utilizing Graphene-Based Ternary Composite Materials 149<br /></b><i>B. Saravanakumar, K. K. Purushothaman, S.Vadivel, A. Sakthivel, N. Karthikeyan and P. A. Periasamy</i></p> <p>7.1 Introduction 150</p> <p>7.2 Charge Storage Mechanism of a Supercapacitor Device 151</p> <p>7.2.1 Design of a Supercapacitor Electrode 154</p> <p>7.3 Graphene and its Functionalized Forms 154</p> <p>7.3.1 Graphene 154</p> <p>7.3.2 Graphene Oxide 155</p> <p>7.3.3 Reduced Graphene Oxide 155</p> <p>7.4 Varieties of Graphene-Based Ternary Composite 155</p> <p>7.4.1 Graphene-Conducting Polymer-Metal Oxide 156</p> <p>7.4.1.1 Graphene-PEDOT-Metal Oxide 156</p> <p>7.4.1.2 Graphene-PANI-Metal Oxide 157</p> <p>7.4.1.3 Graphene-PPy-Metal Oxide 159</p> <p>7.4.2 Graphene/Other Carbon/Conducting Polymer 159</p> <p>7.4.3 Graphene/Other Carbon Material/Metal Oxide 160</p> <p>7.4.4 Other Graphene-Based Ternary Materials 161</p> <p>7.5 Conclusion and Future Perspectives 162</p> <p>References 162</p> <p><b>8 Graphene: An Insight Into Electrochemical Sensing Technology 169<br /></b><i>Anantharaman Shivakumar and Honnur Krishna</i></p> <p>8.1 Introduction 170</p> <p>8.2 Electronic Band Structure of Graphene 172</p> <p>8.3 Electrochemical Influence of the Graphene Due to Doping Effect 174</p> <p>8.4 Exfoliation of Graphite: Chemistry Behind Scientific Approach 176</p> <p>8.5 Electrochemical Reduction of Oxidized Graphene 184</p> <p>8.6 Spectroscopic Study of Graphene 187</p> <p>8.7 Biotechnical Functionalization of Graphene 188</p> <p>8.8 Graphene Technology in Sensors 190</p> <p>8.8.1 Glucose Sensors 190</p> <p>8.8.2 DNA and Aptamer Sensors 192</p> <p>8.8.3 Pollutant Sensors 197</p> <p>8.8.4 Gas Sensors 200</p> <p>8.8.5 Pharmaceutical Sensors and Antioxidant Sensors 201</p> <p>8.9 Conclusion 208</p> <p>Acknowledgements 210</p> <p>References 210</p> <p><b>9 Germanene 235<br /></b><i>Mohd Imran Ahamed and Naushad Anwar</i></p> <p>9.1 Introduction 236</p> <p>9.2 Structural Arrangements 239</p> <p>9.2.1 Elemental Structures 239</p> <p>9.2.2 Decorated Structures 240</p> <p>9.2.3 Composite Structures 243</p> <p>9.3 Fundamental Properties of Germanene 243</p> <p>9.3.1 Quantum Spin Hall (QSH) Effect 243</p> <p>9.3.2 Mechanical Properties 245</p> <p>9.3.3 Thermal Properties 246</p> <p>9.3.4 Optical Properties 246</p> <p>9.4 Applications of Germanene 248</p> <p>9.4.1 Strain-Induced Self-Doping in Germanene 248</p> <p>9.4.2 In Battery Applications 249</p> <p>9.4.3 In Electronic Devices 250</p> <p>9.4.4 Catalysis 250</p> <p>9.4.5 Optoelectronic and Luminescence Applications 254</p> <p>9.5 Conclusions 255</p> <p>References 255</p> <p><b>10 2D Graphene Nanostructures for Biomedical Applications 261<br /></b><i>Kiran Rana, Rinky Ghosh and Neha Kanwar Rawat</i></p> <p>10.1 Introduction 261</p> <p>10.1.1 Synthesis Routes of Graphene 263</p> <p>10.1.2 Graphene and its Derivatives 263</p> <p>10.2 Applications of Graphene in Biomedicine 265</p> <p>10.2.1 Tissue Engineering 265</p> <p>10.2.1.1 Cartilage Tissue Engineering 266</p> <p>10.2.2 Bone Tissue Engineering 269</p> <p>10.2.2.1 Methods of Fracture Repair 269</p> <p>10.2.2.2 Graphene Used in Bone Tissue Engineering 269</p> <p>10.2.3 Gene Delivery 271</p> <p>10.2.4 Cancer Therapy 272</p> <p>10.2.5 Genotoxicity 273</p> <p>10.2.6 2D Application of Graphene in Biosensing 274</p> <p>10.2.7 Prosthetic Implants 275</p> <p>10.3 Conclusion 277</p> <p>References 278</p> <p><b>11 Graphene and Graphene-Integrated Materials for Energy Device Applications 285<br /></b><i>Santhosh, G. and Bhatt, Aarti S.</i></p> <p>11.1 Introduction 285</p> <p>11.1.1 Anode Materials for Electrodes 288</p> <p>11.1.2 Cathode Materials for Electrodes 289</p> <p>11.2 Graphene-Integrated Electrodes for Lithium-Ion Batteries (LIBs) 290</p> <p>11.2.1 The Working of LIBs 291</p> <p>11.2.2 Graphene-Integrated Cathodes 293</p> <p>11.2.2.1 Graphene/LiFePO<sub>4</sub> as Cathode 293</p> <p>11.2.2.2 Graphene/LiMn<sub>2</sub>O<sub>4</sub> as Cathode 294</p> <p>11.2.2.3 Graphene-Layered Cathode Material 295</p> <p>11.2.3 Graphene-Integrated Anodes 296</p> <p>11.2.3.1 Graphene/Li<sub>4</sub>Ti<sub>5</sub>O<sub>12 </sub>as Anode 297</p> <p>11.2.3.2 Graphene/Si or Ge as Anode 298</p> <p>11.2.3.3 Graphene/Metal Oxides as Anodes 299</p> <p>11.2.3.4 Graphene/Sulfides as Anodes 302</p> <p>11.3 Graphene-Integrated Nanocomposites for Supercapacitors (SCs) 303</p> <p>11.3.1 Working Mechanism of Supercapacitors 304</p> <p>11.3.1.1 Electrochemical Double Layer Capacitors (EDLC) 304</p> <p>11.3.1.2 Pseudo-Capacitors 304</p> <p>11.3.1.3 Hybrid Supercapacitors 304</p> <p>11.3.2 Graphene-Integrated Supercapacitors (GSCs) 305</p> <p>11.3.2.1 Graphene/Organic Material Nanocomposites 306</p> <p>11.3.2.2 Graphene/Conducting Polymer Nanocomposites 307</p> <p>11.3.2.3 Graphene/Metal Oxide Nanocomposites 310</p> <p>11.4 Conclusion 314</p> <p>References 316</p> <p>Index 329</p>
<p><b>Inamuddin</b>, PhD, is an assistant professor at King Abdulaziz University, Jeddah, Saudi Arabia and is also an assistant professor in the Department of Applied Chemistry, Aligarh Muslim University, Aligarh, India. He has extensive research experience in multidisciplinary fields of analytical chemistry, materials chemistry, electrochemistry, renewable energy and environmental science. He has published about 150 research articles in various international scientific journals, 18 book chapters, and 60 edited books with multiple well-known publishers. <p><b>Rajender Boddula</b>, PhD, is currently working for the Chinese Academy of Sciences President's International Fellowship Initiative (CAS-PIFI) at the National Center for Nanoscience and Technology (NCNST, Beijing). His academic honors include multiple fellowships and scholarships, and he has published many scientific articles in international peer-reviewed journals, edited books with numerous publishers and has authored twenty book chapters. <p><b>Mohd Imran Ahamed</b> received his Ph.D on the topic "Synthesis and characterization of inorganic-organic composite heavy metals selective cation-exchangers and their analytical applications", from Aligarh Muslim University, India in 2019. He has published several research and review articles in SCI journals. His research focusses on ion-exchange chromatography, wastewater treatment and analysis, actuators and electrospinning. <p><b>Abdullah M. Asiri</b> is the Head of the Chemistry Department at King Abdulaziz University and the founder and Director of the Center of Excellence for Advanced Materials Research (CEAMR). He is the Editor-in-Chief of the King Abdulaziz University <i>Journal of Science</i>. He has received numerous awards, including the first prize for distinction in science from the Saudi Chemical Society in 2012. He holds multiple patents, has authored ten books and more than one thousand publications in international journals.
<p><b>Edited by one of the most prolific engineers in the world and his team, this is a thorough and up-to-date volume on 2D monoelements-based semiconductor materials</b>. <p>The development of new two-dimensional (2D) monoelements-based semiconductor materials, such as phosphorene, graphene, antimonene, etc., has attracted many researchers due to their wide range of applications in diverse sectors along with their promotion of novel innovations in the field of science. Due to their impressive physical, chemical, electronic, and optical properties, these 2D monoelements have been identified as potential agents for a variety of applications such as electronics, theranostics, therapeutic delivery, bioimaging, sensors, field-effect transistors, the environment, energy conversion, storage, etc. <p>The 11 chapters in <i>Monoelements: Properties and Applications</i> explore the basic idea of 2D monoelements, classifications, and applications in biosensing, energy systems, biomedicine, etc. Various challenges, future developments, and research progress are also discussed. <p><b>Audience</b> <p>This book will be useful for industrial engineers, researchers and graduate students working in the areas of semiconductors, sensors and biosensors, materials science, and engineering

Diese Produkte könnten Sie auch interessieren: