Details

CMOS


CMOS

Circuit Design, Layout, and Simulation
IEEE Press Series on Microelectronic Systems 4. Aufl.

von: R. Jacob Baker

115,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 19.06.2019
ISBN/EAN: 9781119481393
Sprache: englisch
Anzahl Seiten: 1280

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>A revised guide to the theory and implementation of CMOS analog and digital IC design</b></p> <p>The fourth edition of <i>CMOS: Circuit Design, Layout, and Simulation</i> is an updated guide to the practical design of both analog and digital integrated circuits. The author—a noted expert on the topic—offers a contemporary review of a wide range of analog/digital circuit blocks including: phase-locked-loops, delta-sigma sensing circuits, voltage/current references, op-amps, the design of data converters, and switching power supplies.</p> <p>CMOS includes discussions that detail the trade-offs and considerations when designing at the transistor-level. The companion website contains numerous examples for many computer-aided design (CAD) tools. Using the website enables readers to recreate, modify, or simulate the design examples presented throughout the book. In addition, the author includes hundreds of end-of-chapter problems to enhance understanding of the content presented. This newly revised edition:</p> <p>•    Provides in-depth coverage of both analog and digital transistor-level design techniques</p> <p>•    Discusses the design of phase- and delay-locked loops, mixed-signal circuits, data converters, and circuit noise</p> <p>•    Explores real-world process parameters, design rules, and layout examples</p> <p>•    Contains a new chapter on Power Electronics</p> <p>Written for students in electrical and computer engineering and professionals in the field, the fourth edition of <i>CMOS: Circuit Design, Layout, and Simulation</i> is a practical guide to understanding analog and digital transistor-level design theory and techniques.</p>
<p>Preface xxxiii</p> <p><b>Chapter 1 Introduction to CMOS Design 1</b></p> <p>1.1 The CMOS IC Design Process 1</p> <p>1.1.1 Fabrication 2</p> <p>1.2 CMOS Background 5</p> <p>1.3 An Introduction to SPICE 8</p> <p><b>Chapter 2 The Well 31</b></p> <p>2.1 Patterning 32</p> <p>2.1.1 Patterning the N-well 35</p> <p>2.2 Laying Out the N-well 35</p> <p>2.2.1 Design Rules for the N-well 36</p> <p>2.3 Resistance Calculation 36</p> <p>2.3.1 The N-well Resistor 38</p> <p>2.4 The N-well/Substrate Diode 39</p> <p>2.4.1 A Brief Introduction to PN Junction Physics 39</p> <p>2.4.2 Depletion Layer Capacitance 42</p> <p>2.4.3 Storage or Diffusion Capacitance 45</p> <p>2.4.4 SPICE Modeling 46</p> <p>2.5 The RC Delay through the N-well 48</p> <p>2.6 Twin Well Processes 51</p> <p><b>Chapter 3 The Metal Layers 59</b></p> <p>3.1 The Bonding Pad 59</p> <p>3.1.1 Laying Out the Pad I 60</p> <p>3.2 Design and Layout Using the Metal Layers 63</p> <p>3.2.1 Metal1 and Via1 63</p> <p>3.2.2 Parasitics Associated with the Metal Layers 63</p> <p>3.2.3 Current-Carrying Limitations 67</p> <p>3.2.4 Design Rules for the Metal Layers 68</p> <p>3.2.5 Contact Resistance 69</p> <p>3.3 Crosstalk and Ground Bounce 70</p> <p>3.3.1 Crosstalk 71</p> <p>3.3.2 Ground Bounce 72</p> <p>3.4 Layout Examples 74</p> <p>3.4.1 Laying Out the Pad II 74</p> <p>3.4.2 Laying Out Metal Test Structures 76</p> <p><b>Chapter 4 The Active and Poly Layers 83</b></p> <p>4.1 Layout Using the Active and Poly Layers 83</p> <p>4.1.1 Process Flow 90</p> <p>4.2 Connecting Wires to Poly and Active 93</p> <p>4.3 Electrostatic Discharge (ESD) Protection 99</p> <p><b>Chapter 5 Resistors, Capacitors, MOSFETs 107</b></p> <p>5.1 Resistors 107</p> <p>5.2 Capacitors 115</p> <p>5.3 MOSFETs 118</p> <p>5.4 Layout Examples 125</p> <p><b>Chapter 6 MOSFET Operation 135</b></p> <p>6.1 MOSFET Capacitance Overview/Review 136</p> <p>6.2 The Threshold Voltage 139</p> <p>6.3 IV Characteristics of MOSFETs 144</p> <p>6.3.1 MOSFET Operation in the Triode Region 144</p> <p>6.3.2 The Saturation Region 146</p> <p>6.4 SPICE Modeling of the MOSFET 149</p> <p>6.4.1 Some SPICE Simulation Examples 151</p> <p>6.4.2 The Subthreshold Current 152</p> <p>6.5 Short-Channel MOSFETs 154</p> <p>6.5.1 MOSFET Scaling 155</p> <p>6.5.2 Short-Channel Effects 156</p> <p>6.5.3 SPICE Models for Our Short-Channel CMOS Process 157</p> <p><b>Chapter 7 CMOS Fabrication by Jeff Jessing 165</b></p> <p>7.1 CMOS Unit Processes 165</p> <p>7.1.1 Wafer Manufacture 165</p> <p>7.1.2 Thermal Oxidation 167</p> <p>7.1.3 Doping Processes 168</p> <p>7.1.4 Photolithography 170</p> <p>7.1.5 Thin Film Removal 173</p> <p>7.1.6 Thin Film Deposition 177</p> <p>7.2 CMOS Process Integration 180</p> <p>7.2.1 Frontend-of-the-Line Integration 182</p> <p>7.2.2 Backend-of-the-Line Integration 196</p> <p>7.3 Backend Processes 210</p> <p>7.4 Advanced CMOS Process Integration 212</p> <p>7.4.1 FinFETs 213</p> <p>7.4.2 Dual Damascene Low-k/Cu Interconnects 216</p> <p>7.5 Summary 219</p> <p><b>Chapter 8 Electrical Noise: An Overview 221</b></p> <p>8.1 Signals 221</p> <p>8.1.1 Power and Energy 221</p> <p>8.1.2 Power Spectral Density 223</p> <p>8.2 Circuit Noise 226</p> <p>8.2.1 Calculating and Modeling Circuit Noise 227</p> <p>8.2.2 Thermal Noise 231</p> <p>8.2.3 Signal-to-Noise Ratio 237</p> <p>8.2.4 Shot Noise 247</p> <p>8.2.5 Flicker Noise 251</p> <p>8.2.6 Other Noise Sources 258</p> <p>8.3 Discussion 260</p> <p>8.3.1 Correlation 260</p> <p>8.3.2 Noise and Feedback 264</p> <p>8.3.3 Some Final Notes Concerning Notation 267</p> <p><b>Chapter 9 Models for Analog Design 277</b></p> <p>9.1 Long-Channel MOSFETs 277</p> <p>9.1.1 The Square-Law Equations 279</p> <p>9.1.2 Small Signal Models 286</p> <p>9.1.3 Temperature Effects 300</p> <p>9.2 Short-Channel MOSFETs 302</p> <p>9.2.1 General Design (A Starting Point) 303</p> <p>9.2.2 Specific Design (A Discussion) 306</p> <p>9.3 MOSFET Noise Modeling 308</p> <p><b>Chapter 10 Models for Digital Design 327</b></p> <p>10.1 The Digital MOSFET Model 328</p> <p>10.1.2 Process Characteristic Time Constant 331</p> <p>10.1.3 Delay and Transition Times 333</p> <p>10.1.4 General Digital Design 326</p> <p>10.2 The MOSFET Pass Gate 326</p> <p>10.2.1 Delay through a Pass Gate 338</p> <p>10.2.2 Delay through Series-Connected PGs 340</p> <p>10.3 A Final Comment Concerning Measurements 341</p> <p><b>Chapter 11 The Inverter 347</b></p> <p>11.1 DC Characteristics 347</p> <p>11.2 Switching Characteristics 352</p> <p>11.3 Layout of the Inverter 356</p> <p>11.4 Sizing for Large Capacitive Loads 358</p> <p>11.5 Other Inverter Configurations 364</p> <p><b>Chapter 12 Static Logic Gates 369</b></p> <p>12.1 DC Characteristics of the NAND and NOR Gates 369</p> <p>12.1.1 DC Characteristics of the NAND Gate 369</p> <p>12.1.2 DC Characteristics of the NOR Gate 372</p> <p>12.2 Layout of the NAND and NOR Gates 373</p> <p>12.3 Switching Characteristics 374</p> <p>12.3.1 NAND Gate 375</p> <p>12.3.2 Number of Inputs 378</p> <p>12.4 Complex CMOS Logic Gates 379</p> <p><b>Chapter 13 Clocked Circuits 389</b></p> <p>13.1 The CMOS TG 389</p> <p>13.2 Applications of the Transmission Gate 391</p> <p>13.3 Latches and Flip-Flops 395</p> <p>13.4 Examples 402</p> <p><b>Chapter 14 Dynamic Logic Gates 411</b></p> <p>14.1 Fundamentals of Dynamic Logic 411</p> <p>14.1.1 Charge Leakage 411</p> <p>14.1.2 Simulating Dynamic Circuits 414</p> <p>14.1.3 Nonoverlapping Clock Generation 415</p> <p>14.1.4 CMOS TG in Dynamic Circuits 416</p> <p>14.2 Clocked CMOS Logic 417</p> <p><b>Chapter 15 CMOS Layout Examples 425</b></p> <p>15.1 Chip Layout 426</p> <p>15.2 Layout Steps by Dean Moriarty 434</p> <p><b>Chapter 16 Memory Circuits 445</b></p> <p>16.1 Array Architectures 446</p> <p>16.1.1 Sensing Basics 446</p> <p>16.1.2 The Folded Array 452</p> <p>16.1.3 Chip Organization 458</p> <p>16.2 Peripheral Circuits 458</p> <p>16.2.1 Sense Amplifier Design 458</p> <p>16.2.2 Row/Column Decoders 467</p> <p>16.2.3 Row Drivers 470</p> <p>16.3 Memory Cells 471</p> <p>16.3.1 The SRAM Cell 473</p> <p>16.3.2 Read-Only Memory (ROM) 473</p> <p>16.3.3 Floating Gate Memory 473</p> <p><b>Chapter 17 Sensing Using Modulation 493</b></p> <p>17.1 Qualitative Discussion 494</p> <p>17.1.1 Examples of DSM 494</p> <p>17.1.2 Using DSM for Sensing in Flash Memory 496</p> <p>17.2 Sensing Resistive Memory 506</p> <p>17.3 Sensing in CMOS Imagers 513</p> <p><b>Chapter 18 Special Purpose CMOS Circuits 533</b></p> <p>18.1 The Schmitt Trigger 533</p> <p>18.1.1 Design of the Schmitt Trigger 534</p> <p>18.1.2 Applications of the Schmitt Trigger 536</p> <p>18.2 Multivibrator Circuits 538</p> <p>18.2.1 The Monostable Multivibrator 539</p> <p>18.2.2 The Astable Multivibrator 540</p> <p>18.3 Input Buffers 541</p> <p>18.3.1 Basic Circuits 541</p> <p>18.3.2 Differential Circuits 543</p> <p>18.3.3 DC Reference 547</p> <p>18.3.4 Reducing Buffer Input Resistance 550</p> <p>18.4 Charge Pumps (Voltage Generators) 551</p> <p>18.4.1 Increasing the Output Voltage 553</p> <p>18.4.2 Generating Higher Voltages: The Dickson Charge Pump 553</p> <p>18.4.3 Example 556</p> <p><b>Chapter 19 Digital Phase-Locked Loops 561</b></p> <p>19.1 The Phase Detector 563</p> <p>19.1.1 The XOR Phase Detector 563</p> <p>19.1.2 The Phase Frequency Detector 567</p> <p>19.2 The Voltage-Controlled Oscillator 570</p> <p>19.2.1 The Current-Starved VCO 570</p> <p>19.2.2 Source-Coupled VCOs 574</p> <p>19.3 The Loop Filter 576</p> <p>19.3.1 XOR DPLL 577</p> <p>19.3.2 PFD DPLL 583</p> <p>19.4 System Concerns 590</p> <p>19.4.1 Clock Recovery from NRZ Data 593</p> <p>19.5 Delay-Locked Loops 600</p> <p>19.6 Some Examples 603</p> <p>19.6.1 A 2 GHz DLL 603</p> <p>19.6.2 A 1 Gbit/s Clock-Recovery Circuit 609</p> <p><b>Chapter 20 Current Mirrors 621</b></p> <p>20.1 The Basic Current Mirror 621</p> <p>20.1.1 Long-Channel Design 622</p> <p>20.1.2 Matching Currents in the Mirror 624</p> <p>20.1.3 Biasing the Current Mirror 628</p> <p>20.1.4 Short-Channel Design 634</p> <p>20.1.5 Temperature Behavior 638</p> <p>20.1.6 Biasing in the Subthreshold Region 642</p> <p>20.2 Cascoding the Current Mirror 643</p> <p>20.2.1 The Simple Cascode 643</p> <p>20.2.2 Low-Voltage (Wide-Swing) Cascode 645</p> <p>20.2.3 Wide-Swing, Short-Channel Design 648</p> <p>20.2.4 Regulated Drain Current Mirror 651</p> <p>20.3 Biasing Circuits 653</p> <p>20.3.1 Long-Channel Biasing Circuits 653</p> <p>20.3.2 Short-Channel Biasing Circuits 656</p> <p>20.3.3 A Final Comment 657</p> <p><b>Chapter 21 Amplifiers 671</b></p> <p>21.1 Gate-Drain Connected Loads 671</p> <p>21.1.1 Common-Source (CS) Amplifiers 671</p> <p>21.1.2 The Source Follower (Common-Drain Amplifier) 683</p> <p>21.1.3 Common Gate Amplifier 684</p> <p>21.2 Current Source Loads 685</p> <p>21.2.1 Common-Source Amplifier 685</p> <p>21.2.2 The Cascode Amplifier 698</p> <p>21.2.3 The Common-Gate Amplifier 702</p> <p>21.2.4 The Source Follower (Common-Drain Amplifier) 702</p> <p>21.3 The Push-Pull Amplifier 710</p> <p>21.3.1 DC Operation and Biasing 711</p> <p>21.3.2 Small-Signal Analysis 714</p> <p>21.3.3 Distortion 716</p> <p><b>Chapter 22 Differential Amplifiers 735</b></p> <p>22.1 The Source-Coupled Pair 735</p> <p>22.1.1 DC Operation 735</p> <p>22.1.2 AC Operation 741</p> <p>22.1.3 Common-Mode Rejection Ratio 745</p> <p>22.1.4 Matching Considerations 746</p> <p>22.1.5 Noise Performance 749</p> <p>22.1.6 Slew-Rate Limitations 750</p> <p>22.2 The Source Cross-Coupled Pair 750</p> <p>22.2.1 Current Source Load 754</p> <p>22.3 Cascode Loads (The Telescopic Diff-Amp) 756</p> <p>22.4 Wide-Swing Differential Amplifiers 758</p> <p>22.4.1 Current Differential Amplifier 760</p> <p>22.4.2 Constant Transconductance Diff-Amp 760</p> <p><b>Chapter 23 Voltage References 773</b></p> <p>23.1 MOSFET-Resistor Voltage References 774</p> <p>23.1.1 The Resistor-MOSFET Divider 774</p> <p>23.1.2 The MOSFET-Only Voltage Divider 777</p> <p>23.1.3 Self-Biased Voltage References 778</p> <p>23.2 Parasitic Diode-Based References 784</p> <p>23.2.1 Long-Channel BGR Design 787</p> <p>23.2.2 Short-Channel BGR Design 795</p> <p><b>Chapter 24 Operational Amplifiers I 803</b></p> <p>24.1 The Two-Stage Op-Amp 804</p> <p>24.2 An Op-Amp with Output Buffer 822</p> <p>24.3 The Operational Transconductance Amplifier (OTA) 824</p> <p>24.4 Gain-Enhancement 835</p> <p>24.5 Some Examples and Discussions 839</p> <p><b>Chapter 25 Dynamic Analog Circuits 857</b></p> <p>25.1 The MOSFET Switch 857</p> <p>25.1.1 Sample-and-Hold Circuits 861</p> <p>25.2 Fully-Differential Circuits 864</p> <p>25.2.1 A Fully-Differential Sample-and-Hold 866</p> <p>25.3 Switched-Capacitor Circuits 869</p> <p>25.3.1 Switched-Capacitor Integrator 871</p> <p>25.4 Circuits 879</p> <p><b>Chapter 26 Operational Amplifiers II 889</b></p> <p>26.1 Biasing for Power and Speed 889</p> <p>26.1.1 Device Characteristics 890</p> <p>26.1.2 Biasing Circuit 891</p> <p>26.2 Basic Concepts 892</p> <p>26.3 Basic Op-Amp Design 900</p> <p>26.4 Op-Amp Design Using Switched-Capacitor CMFB 920</p> <p><b>Chapter 27 Nonlinear Analog Circuits 933</b></p> <p>27.1 Basic CMOS Comparator Design 933</p> <p>27.1.1 Characterizing the Comparator 939</p> <p>27.1.2 Clocked Comparators 942</p> <p>27.1.3 Input Buffers Revisited 943</p> <p>27.2 Adaptive Biasing 943</p> <p>27.3 Analog Multipliers 946</p> <p>27.3.1 The Multiplying Quad 947</p> <p><b>Chapter 28 Data Converter Fundamentals by Harry Li 955</b></p> <p>28.1 Analog Versus Discrete Time Signals 955</p> <p>28.2 Converting Analog Signals to Digital Signals 956</p> <p>28.3 Sample-and-Hold (S/H) Characteristics 959</p> <p>28.4 Digital-to-Analog Converter (DAC) Specifications 961</p> <p>28.5 Analog-to-Digital Converter (ADC) Specifications 970</p> <p>28.6 Mixed-Signal Layout Issues 979</p> <p><b>Chapter 29 Data Converter Architectures by Harry Li 987</b></p> <p>29.1 DAC Architectures 987</p> <p>29.1.1 Digital Input Code 987</p> <p>29.1.2 Resistor String 987</p> <p>29.1.3 R-2R Ladder Networks 992</p> <p>29.1.4 Current Steering 995</p> <p>29.1.5 Charge-Scaling DACs 999</p> <p>29.1.6 Cyclic DAC 1003</p> <p>29.1.7 Pipeline DAC 1005</p> <p>29.2 ADC Architectures 1006</p> <p>29.2.1 Flash 1006</p> <p>29.2.2 The Two-Step Flash ADC 1010</p> <p>29.2.3 The Pipeline ADC 1014</p> <p>29.2.4 Integrating ADCs 1018</p> <p>29.2.5 The Successive Approximation ADC 1022</p> <p>29.2.6 The Oversampling ADC 1027</p> <p><b>Chapter 30 Implementing Data Converters 1043</b></p> <p>30.1 R-2R Topologies for DACs 1043</p> <p>30.1.1 The Current-Mode R-2R DAC 1044</p> <p>30.1.2 The Voltage-Mode R-2R DAC 1045</p> <p>30.1.3 A Wide-Swing Current-Mode R-2R DAC 1047</p> <p>30.1.4 Topologies Without an Op-Amp 1057</p> <p>30.2 Op-Amps in Data Converters 1063</p> <p>30.2.1 Op-Amp Gain 1066</p> <p>30.2.2 Op-Amp Unity Gain Frequency 1067</p> <p>30.2.3 Op-Amp Offset 1067</p> <p>30.3 Implementing ADCs 1070</p> <p>30.3.1 Implementing the S/H 1071</p> <p>30.3.2 The Cyclic ADC 1077</p> <p>30.3.3 The Pipeline ADC 1084</p> <p><b>Chapter 31 Feedback Amplifiers with Harry Li 1115</b></p> <p>31.1 The Feedback Equation 1115</p> <p>31.2 Properties of Negative Feedback on Amplifier Design 1117</p> <p>31.2.1 Gain Desensitivity 1117</p> <p>31.3 Recognizing Feedback Topologies 1120</p> <p>31.3.1 Input Mixing 1121</p> <p>31.3.2 Output Sampling 1121</p> <p>31.3.3 The Feedback Network 1122</p> <p>31.3.4 Calculating Open-Loop Parameters 1125</p> <p>31.3.5 Calculating Closed-Loop Parameters 1127</p> <p>31.4 The Voltage Amp (Series-Shunt Feedback) 1128</p> <p>31.5 The Transimpedance Amp (Shunt-Shunt Feedback) 1134</p> <p>31.5.1 Simple Feedback Using a Gate-Drain Resistor 1140</p> <p>31.6 The Transconductance Amp (Series-Series Feedback) 1142</p> <p>31.7 The Current Amplifier (Shunt-Series Feedback) 1146</p> <p>31.8 Stability 1148</p> <p>31.8.1 The Return Ratio 1151</p> <p>31.9 Design Examples 1154</p> <p>31.9.1 Voltage Amplifiers 1154</p> <p>31.9.2 A Transimpedance Amplifier 1158</p> <p><b>Chapter 32 Hysteretic Power Converters 1175</b></p> <p>32.1 A Review of Power and Energy Basics 1176</p> <p>32.1.1 Energy Storage in Inductors and Capacitors 1177</p> <p>32.1.2 Energy Use in Transmitting Data 1180</p> <p>32.1.3 Selection and use of Switches 1181</p> <p>32.2 Switching Power Supplies: Some Examples 1189</p> <p>32.2.1 The Buck SPS 1189</p> <p>32.2.2 The Boost SPS 1196</p> <p>32.2.3 The Flyback SPS 1200</p> <p>32.2.4 Pulse Width Modulation: A Control Loop Example 1204</p> <p>32.3 Hysteretic Control 1210</p> <p>32.3.1 Topologies 1211</p> <p>32.3.2 Examples 1212</p> <p>Index 1219</p> <p>About the Author 1235</p>
<p><b>R. JACOB (JAKE) BAKER, P<small>H</small>D,</b> is an engineer, educator, and inventor. He has more than twenty years of engineering experience and holds more than 200 granted or pending patents in integrated circuit design. Jake is the author of several circuit design books for Wiley-IEEE Press. In 2007, he received the Hewlett-Packard Frederick Emmons Terman Award.
<p><b>A revised guide to the theory and implementation of CMOS analog and digital IC design</b> <p>The fourth edition of <i>CMOS: Circuit Design, Layout, and Simulation</i> is an updated guide to the practical design of both analog and digital integrated circuits. The author—a noted expert on the topic—offers a contemporary review of a wide range of analog/digital circuit blocks including: phase-locked-loops, delta-sigma sensing circuits, voltage/current references, op-amps, the design of data converters, and switching power supplies. <p><i>CMOS</i> includes discussions that detail the trade-offs and considerations when designing at the transistor-level. The companion website contains numerous examples for many computer-aided design (CAD) tools. Using the website enables readers to recreate, modify, or simulate the design examples presented throughout the book. In addition, the author includes hundreds of end-of-chapter problems to enhance understanding of the content presented. This newly revised edition: <ul> <li>Provides in-depth coverage of both analog and digital transistor-level design techniques</li> <li>Discusses the design of phase- and delay-locked loops, mixed-signal circuits, data converters, and circuit noise</li> <li>Explores real-world process parameters, design rules, and layout examples</li> <li>Contains a new chapter on Power Electronics</li> </ul> <p>Written for students in electrical and computer engineering and professionals in the field, the fourth edition of <i>CMOS: Circuit Design, Layout, and Simulation</i> is a practical guide to understanding analog and digital transistor-level design theory and techniques.

Diese Produkte könnten Sie auch interessieren:

Pulsed Power
Pulsed Power
von: Gennady A. Mesyats
PDF ebook
341,33 €
High-Frequency Oscillator Design for Integrated Transceivers
High-Frequency Oscillator Design for Integrated Transceivers
von: J. van der Tang, Dieter Kasperkovitz, Arthur H.M. van Roermund
PDF ebook
149,79 €
MEMS Vibratory Gyroscopes
MEMS Vibratory Gyroscopes
von: Cenk Acar, Andrei Shkel
PDF ebook
181,89 €