Details

Glass-Ceramic Technology


Glass-Ceramic Technology


3. Aufl.

von: Wolfram Holand, George H. Beall

170,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 09.08.2019
ISBN/EAN: 9781119423713
Sprache: englisch
Anzahl Seiten: 448

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>An updated edition of the essential guide to the technology of glass-ceramic technology</b></p> <p>Glass-ceramic materials share many properties with both glass and more traditional crystalline ceramics. The revised third edition of <i>Glass-Ceramic Technology</i> offers a comprehensive and updated guide to the various types of glass-ceramic materials, the methods of development, and the myriad applications for glass-ceramics. Written in an easy-to-use format, the book includes an explanation of the new generation of glass-ceramics.</p> <p>The updated third edition explores glass-ceramics new materials and properties and reviews the expanding regions for applying these materials. The new edition contains current information on glass/glass-ceramic forming in general and explores specific systems, crystallization mechanisms and products such as: ion exchange strengthening of glass-ceramics, glass-ceramics for mobile phones, new glass-ceramics for energy, and new glass-ceramics for optical and architectural application. It also contains a new section on dental materials and twofold controlled crystallization. This revised guide:</p> <ul> <li>Offers an important new section on glass/glass ceramic forming</li> <li>Includes the fundamentals and the application of nanotechnology as related to glass-ceramic technology</li> <li>Reviews the development of the various types of glass-ceramic materials</li> <li>Covers information on new glass-ceramics with new materials and properties and outlines the opportunities for applying these materials</li> </ul> <p>Written for ceramic and materials engineers, managers, and designers in the ceramic and glass industry, the third edition of <i>Glass-Ceramic Technology </i>features new sections on Glass/Glass-Ceramic Forming and new Glass-Ceramics as well as expanded sections on dental materials and twofold controlled crystallization.</p>
<p>Introduction to the Third Edition xi</p> <p>History xiii</p> <p><b>1 Principles of Designing Glass-Ceramic Formation 1</b></p> <p>1.1 Advantages of Glass-Ceramic Formation 1</p> <p>1.1.1 Processing Properties 1</p> <p>1.1.2 Thermal Properties 2</p> <p>1.1.3 Optical Properties 3</p> <p>1.1.4 Chemical Properties 3</p> <p>1.1.5 Biological Properties 3</p> <p>1.1.6 Mechanical Properties 3</p> <p>1.1.7 Electrical and Magnetic Properties 3</p> <p>1.2 Factors of Design 4</p> <p>1.3 Crystal Structures and Mineral Properties 4</p> <p>1.3.1 Crystalline Silicates 4</p> <p>1.3.1.1 Nesosilicates 5</p> <p>1.3.1.2 Sorosilicates 5</p> <p>1.3.1.3 Cyclosilicates 5</p> <p>1.3.1.4 Inosilicates 6</p> <p>1.3.1.5 Phyllosilicates 7</p> <p>1.3.1.6 Tectosilicates 7</p> <p>1.3.2 Phosphates 27</p> <p>1.3.2.1 Apatite 27</p> <p>1.3.2.2 Orthophosphates and Diphosphates 29</p> <p>1.3.2.3 Metaphosphates 30</p> <p>1.3.3 Oxides 31</p> <p>1.3.3.1 TiO<sub>2 </sub>32</p> <p>1.3.3.2 ZrO<sub>2 </sub>32</p> <p>1.3.3.3 MgAl<sub>2</sub>O<sub>4 </sub>(Spinel) 33</p> <p>1.4 Nucleation 34</p> <p>1.4.1 Homogeneous Nucleation 36</p> <p>1.4.2 Heterogeneous Nucleation 38</p> <p>1.4.3 Kinetics of Homogeneous and Heterogeneous Nucleation 39</p> <p>1.4.4 Limits of the Classical Nucleation and Crystallization Theory (CNT) and New Approaches 42</p> <p>1.4.5 Examples of Applying the Nucleation Theory in the Development of Glass-Ceramics 44</p> <p>1.4.5.1 Internal (Volume) Nucleation 44</p> <p>1.4.5.2 Surface Nucleation 48</p> <p>1.4.5.3 Temperature–Time-Transformation Diagrams 50</p> <p>1.5 Crystal Growth 53</p> <p>1.5.1 Primary Growth 54</p> <p>1.5.2 Anisotropic Growth 55</p> <p>1.5.3 Surface Growth 61</p> <p>1.5.4 Dendritic and Spherulitic Crystallization 62</p> <p>1.5.4.1 Phenomenology 62</p> <p>1.5.4.2 Dendritic and Spherulitic Crystallization Applications 64</p> <p>1.5.5 Secondary Grain Growth 64</p> <p><b>2 Composition Systems for Glass-Ceramics 67</b></p> <p>2.1 Alkaline and Alkaline Earth Silicates 67</p> <p>2.1.1 SiO<sub>2</sub>–Li<sub>2</sub>O (Lithium Disilicate) 67</p> <p>2.1.1.1 Stoichiometric Composition 67</p> <p>2.1.1.2 Nonstoichiometric Multicomponent Compositions 69</p> <p>2.1.2 SiO<sub>2</sub>–BaO (Sanbornite) 78</p> <p>2.1.2.1 Stoichiometric Barium Disilicate 78</p> <p>2.1.2.2 Multicomponent Glass-Ceramics 79</p> <p>2.2 Aluminosilicates 80</p> <p>2.2.1 SiO<sub>2</sub>–Al<sub>2</sub>O<sub>3</sub> (Mullite) 80</p> <p>2.2.2 SiO<sub>2</sub>–Al<sub>2</sub>O<sub>3</sub>–Li<sub>2</sub>O (β-Quartz Solid Solution, β-Spodumene Solid Solution) 82</p> <p>2.2.2.1 β-Quartz Solid Solution Glass-Ceramics 82</p> <p>2.2.2.2 β-Spodumene Solid Solution Glass-Ceramics 86</p> <p>2.2.3 SiO<sub>2</sub>–Al<sub>2</sub>O<sub>2</sub>–Na<sub>2</sub>O (Nepheline) 88</p> <p>2.2.4 SiO<sub>2</sub>–Al<sub>2</sub>O<sub>3</sub>–Cs<sub>2</sub>O (Pollucite) 91</p> <p>2.2.5 SiO<sub>2</sub>–Al<sub>2</sub>O<sub>3</sub>–MgO (Cordierite, Enstatite, Forsterite) 93</p> <p>2.2.5.1 Cordierite Glass-Ceramics 93</p> <p>2.2.5.2 Enstatite Glass-Ceramics 97</p> <p>2.2.5.3 Forsterite Glass-Ceramics 99</p> <p>2.2.6 SiO<sub>2</sub>–Al<sub>2</sub>O<sub>3</sub>–CaO (Wollastonite) 101</p> <p>2.2.7 SiO<sub>2</sub>–Al<sub>2</sub>O<sub>3</sub>–ZnO (Zn-Stuffed β-Quartz, Willemite-Zincite) 103</p> <p>2.2.7.1 Zinc-Stuffed β-Quartz Glass-Ceramics 103</p> <p>2.2.7.2 Willemite and Zincite Glass-Ceramics 105</p> <p>2.2.8 SiO<sub>2</sub>–Al<sub>2</sub>O<sub>3</sub>–ZnO–MgO (Spinel, Gahnite) 105</p> <p>2.2.8.1 Spinel Glass-Ceramic without β-Quartz 105</p> <p>2.2.8.2 β-Quartz-Spinel Glass-Ceramics 107</p> <p>2.2.9 SiO<sub>2</sub>–Al<sub>2</sub>O<sub>3</sub>–CaO (Slag Sital) 108</p> <p>2.2.10 SiO<sub>2</sub>–Al<sub>2</sub>O<sub>3</sub>–K<sub>2</sub>O (Leucite) 111</p> <p>2.2.11 SiO<sub>2</sub>–Ga<sub>2</sub>O<sub>3</sub>–Al<sub>2</sub>O<sub>3</sub>–Li<sub>2</sub>O–Na<sub>2</sub>O–K<sub>2</sub>O (Li–Al–Gallate Spinel) 114</p> <p>2.2.12 SiO<sub>2</sub>–Al<sub>2</sub>O<sub>3</sub>–SrO–BaO (Sr–Feldspar–Celsian) 115</p> <p>2.3 Fluorosilicates 118</p> <p>2.3.1 SiO<sub>2</sub>–(R<sup>3+</sup>)<sub>2</sub>O<sub>3</sub>–MgO–(R<sup>2+</sup>)O–(R<sup>+</sup>)<sub>2</sub>O–F (Mica) 118</p> <p>2.3.1.1 Alkaline Phlogopite Glass-Ceramics 119</p> <p>2.3.1.2 Alkali-Free Phlogopite Glass-Ceramics 124</p> <p>2.3.1.3 Tetrasilicic Mica Glass-Ceramic 125</p> <p>2.3.2 SiO2–Al<sub>2</sub>O<sub>3</sub>–MgO–CaO–ZrO<sub>2</sub>–F (Mica, Zirconia) 126</p> <p>2.3.3 SiO<sub>2</sub>–CaO–R<sub>2</sub>O–F (Canasite) 128</p> <p>2.3.4 SiO<sub>2</sub>–MgO–CaO–(R<sup>+</sup>)<sub>2</sub>O–F (Amphibole) 132</p> <p>2.4 Silicophosphates 136</p> <p>2.4.1 SiO<sub>2</sub>–CaO–Na<sub>2</sub>O–P<sub>2</sub>O<sub>5</sub> (Apatite) 136</p> <p>2.4.2 SiO<sub>2</sub>–MgO–CaO–P<sub>2</sub>O<sub>5</sub>–F (Apatite,Wollastonite) 137</p> <p>2.4.3 SiO<sub>2</sub>–MgO–Na<sub>2</sub>O–K<sub>2</sub>O–CaO–P2O5 (Apatite) 138</p> <p>2.4.4 SiO<sub>2</sub>–Al<sub>2</sub>O<sub>3</sub>–MgO–CaO–Na<sub>2</sub>O–K<sub>2</sub>O–P<sub>2</sub>O<sub>5</sub>–F (Mica, Apatite) 139</p> <p>2.4.5 SiO<sub>2</sub>–MgO–CaO–TiO<sub>2</sub>–P<sub>2</sub>O<sub>5 </sub>(Apatite, Magnesium Titanate) 143</p> <p>2.4.6 SiO2–Al<sub>2</sub>O<sub>3</sub>–CaO–Na<sub>2</sub>O–K<sub>2</sub>O–P<sub>2</sub>O<sub>5</sub>–F (Needlelike Apatite) 144</p> <p>2.4.6.1 Formation of Needlelike Apatite as a Parallel Reaction to Rhenanite 147</p> <p>2.4.6.2 Formation of Needlelike Apatite from Disordered Spherical Fluoroapatite 151</p> <p>2.4.7 SiO<sub>2</sub>–Al<sub>2</sub>O<sub>3</sub>–CaO–Na<sub>2</sub>O–K<sub>2</sub>O–P<sub>2</sub>O5–F/Y<sub>2</sub>O<sub>3</sub>, B<sub>2</sub>O<sub>3</sub> (Apatite and Leucite) 152</p> <p>2.4.7.1 Fluoroapatite and Leucite 152</p> <p>2.4.7.2 Silicate Oxyapatite and Leucite 153</p> <p>2.4.8 SiO<sub>2</sub>–CaO–Na<sub>2</sub>O–P<sub>2</sub>O<sub>5</sub>–F (Rhenanite) 156</p> <p>2.5 Iron Silicates 158</p> <p>2.5.1 SiO<sub>2</sub>–Fe<sub>2</sub>O<sub>3</sub>–CaO 158</p> <p>2.5.2 SiO<sub>2</sub>–Al<sub>2</sub>O<sub>3</sub>–FeO–Fe<sub>2</sub>O<sub>3</sub>–K<sub>2</sub>O (Mica, Ferrite) 159</p> <p>2.5.3 SiO<sub>2</sub>–Al<sub>2</sub>O<sub>3</sub>–Fe<sub>2</sub>O<sub>3</sub>–(R+)2O–(R<sup>2+</sup>)O (Basalt) 160</p> <p>2.6 Phosphates 163</p> <p>2.6.1 P<sub>2</sub>O<sub>5</sub>–CaO (Metaphosphates) 163</p> <p>2.6.2 P<sub>2</sub>O<sub>5</sub>–CaO–TiO<sub>2</sub> 166</p> <p>2.6.3 P<sub>2</sub>O<sub>5</sub>–Na<sub>2</sub>O–BaO and P<sub>2</sub>O<sub>5</sub>–TiO<sub>2</sub>–WO<sub>3</sub> 167</p> <p>2.6.3.1 P<sub>2</sub>O<sub>5</sub>–Na<sub>2</sub>O–BaO System 167</p> <p>2.6.3.2 P<sub>2</sub>O<sub>3</sub>–TiO<sub>2</sub>–WO<sub>3</sub> System 167</p> <p>2.6.4 P<sub>2</sub>O<sub>5</sub>–Al<sub>2</sub>O<sub>3</sub>–CaO (Apatite) 167</p> <p>2.6.5 P<sub>2</sub>O<sub>5</sub>–B<sub>2</sub>O<sub>3</sub>–SiO<sub>2 </sub>169</p> <p>2.6.6 P<sub>2</sub>O<sub>5</sub>–SiO<sub>2</sub>–Li<sub>2</sub>O–ZrO<sub>2 </sub>170</p> <p>2.6.6.1 Glass-Ceramics Containing 16 wt% ZrO<sub>2</sub> 171</p> <p>2.6.6.2 Glass-Ceramics Containing 20 wt% ZrO<sub>2</sub> 171</p> <p>2.6.7 P<sub>2</sub>O<sub>5</sub>–FeO–Na<sub>2</sub>O (Pyrophosphate) 174</p> <p>2.7 Ion Exchange in Glass-Ceramics 174</p> <p>2.8 Rare Earth-Doped Light-Transmitting Glass-Ceramics 186</p> <p>2.8.1 Ce:YAG Glass-Ceramics for White LEDs 186</p> <p>2.8.2 Eu, Dy:SrAl<sub>2</sub>O<sub>4 </sub>Transparent Glass-Ceramics with Long Phosphorescence and High Brightness 188</p> <p>2.8.3 Eu<sup>2+</sup>-Activated β-Ca<sub>2</sub>SiO<sub>4</sub> and Ca<sub>3</sub>Si<sub>2</sub>O<sub>7</sub> Green and Red Phosphors for White LEDs 191</p> <p>2.8.4 Transparent (Er,Yb)NbO<sub>4</sub>-β-Quartz Solid Solution Glass-Ceramics 193</p> <p>2.9 Extension of Glass-Ceramic Systems Developed on the Basis of Multifold Nucleation and Crystallization Mechanisms 193</p> <p>2.9.1 Sr-apatite–Leucite/Pollucite/Rb-leucite 194</p> <p>2.9.1.1 Internal Nucleation and Crystallization 194</p> <p>2.9.1.2 Internal Mechanisms Combined with Surface Nucleation and Crystallization 195</p> <p>2.9.2 Lithium Disilicate–Apatite Glass-Ceramic 197</p> <p>2.9.3 Lithium Disilicate and Cesium Aluminosilicate Glass-Ceramics 203</p> <p>2.9.4 Lithium Disilicate-Diopside/Wollastonite Glass-Ceramic 205</p> <p>2.9.5 Lithium Disilicate-Niobate/Tantalate Glass-Ceramic 207</p> <p>2.9.6 Quartz-Lithium Disilicate Glass-Ceramic 207</p> <p>2.9.7 Transparent Glass-Ceramics Based on Lithium Disilicate and Petalite 209</p> <p>2.10 Other Systems 210</p> <p>2.10.1 Perovskite-Type Glass-Ceramics 210</p> <p>2.10.1.1 SiO<sub>2</sub>–Nb<sub>2</sub>O<sub>5</sub>–Na<sub>2</sub>O–(BaO) 210</p> <p>2.10.1.2 SiO<sub>2</sub>–Al<sub>2</sub>O<sub>3</sub>–TiO<sub>2</sub>–PbO 211</p> <p>2.10.1.3 SiO<sub>2</sub>–Al<sub>2</sub>O3–K<sub>2</sub>O–Ta<sub>2</sub>O<sub>5</sub>–Nb<sub>2</sub>O<sub>5</sub> 212</p> <p>2.10.2 SiO<sub>2</sub>–B<sub>2</sub>O<sub>3</sub>–TiO<sub>2</sub>–La<sub>2</sub>O<sub>3 </sub>System 213</p> <p>2.10.3 Transparent and Highly Crystalline BaAl<sub>4</sub>O<sub>7</sub> Glass-Ceramics 213</p> <p>2.10.4 Chalcogenide Glass-Ceramics 214</p> <p>2.10.5 Ilmenite-Type (SiO<sub>2</sub>–Al<sub>2</sub>O<sub>3</sub>–Li<sub>2</sub>O–Ta<sub>2</sub>O<sub>5</sub>) Glass-Ceramics 214</p> <p>2.10.6 B<sub>2</sub>O<sub>3</sub>–BaFe<sub>12</sub>O<sub>19 </sub>(Barium Hexaferrite) or (BaFe<sub>10</sub>O<sub>15</sub>) Barium Ferrite 214</p> <p>2.10.7 SiO<sub>2</sub>–Al<sub>2</sub>O<sub>3</sub>–BaO–TiO<sub>2</sub> (Barium Titanate) 215</p> <p>2.10.8 Bi<sub>2</sub>O<sub>3</sub>–SrO–CaO–CuO 216</p> <p><b>3 Microstructure Control 217</b></p> <p>3.1 Solid State Reactions 217</p> <p>3.1.1 Isochemical Phase Transformation 217</p> <p>3.1.2 Reactions Between Phases 218</p> <p>3.1.3 Exsolution 218</p> <p>3.1.4 Use of Phase Diagrams to Predict Glass-Ceramic Assemblages 218</p> <p>3.2 Microstructure Design 219</p> <p>3.2.1 Nanocrystalline Microstructures 219</p> <p>3.2.2 Cellular Membrane Microstructures 221</p> <p>3.2.3 Coast-and-Island Microstructure 222</p> <p>3.2.4 Dendritic Microstructures 225</p> <p>3.2.5 Relict Microstructures 227</p> <p>3.2.6 House-of-Cards Microstructures 228</p> <p>3.2.6.1 Nucleation Reactions 229</p> <p>3.2.6.2 Primary Crystal Formation and Mica Precipitation 229</p> <p>3.2.7 Cabbage-Head Microstructures 229</p> <p>3.2.8 Acicular Interlocking Microstructures 235</p> <p>3.2.9 Lamellar Twinned Microstructures 237</p> <p>3.2.10 Preferred Crystal Orientation 238</p> <p>3.2.11 Crystal Network Microstructures 240</p> <p>3.2.12 Nature as an Example 242</p> <p>3.2.13 Nanocrystals 242</p> <p>3.3 Control of Key Properties 243</p> <p>3.3.1 General 243</p> <p>3.3.2 Multifold Nucleation and Crystallization 245</p> <p>3.3.2.1 Control of Mechanical and Thermal Properties 245</p> <p>3.3.2.2 Control of Optical and Thermal Properties 245</p> <p>3.3.2.3 Control of Mechanical and Optical Properties 246</p> <p>3.3.2.4 Control of Mechanical and Magnetic Properties 246</p> <p>3.3.2.5 Control of Biological and Mechanical Properties 246</p> <p>3.4 Methods and Measurements 246</p> <p>3.4.1 Chemical System and Crystalline Phases 246</p> <p>3.4.2 Determination of Crystal Phases 247</p> <p>3.4.3 Kinetic Process of Crystal Formation 249</p> <p>3.4.4 Determination of Microstructure 252</p> <p>3.4.5 Mechanical, Optical, Electrical, Chemical, and Biological Properties 252</p> <p>3.4.5.1 Optical Properties and Chemical Composition of Glass-Ceramics 254</p> <p>3.4.5.2 Mechanical Properties and Microstructure of Glass-Ceramics 254</p> <p>3.4.5.3 Electrical Properties 256</p> <p>3.4.5.4 Chemical Properties 256</p> <p>3.4.5.5 Biological Properties 257</p> <p><b>4 Applications of Glass-Ceramics 259</b></p> <p>4.1 Technical Applications 259</p> <p>4.1.1 Radomes 259</p> <p>4.1.2 Photosensitive and Etched Patterned Materials 259</p> <p>4.1.2.1 Fotoform<sup>®</sup>and Fotoceram<sup>®</sup> 259</p> <p>4.1.2.2 Foturan<sup>®</sup> 262</p> <p>4.1.2.3 Additional Products 265</p> <p>4.1.3 Machinable Glass-Ceramics 265</p> <p>4.1.3.1 MACOR<sup>®</sup>and DICOR<sup>®</sup> 265</p> <p>4.1.3.2 Vitronit<sup>TM</sup> 268</p> <p>4.1.3.3 Photoveel<sup>TM</sup> 269</p> <p>4.1.4 Magnetic Memory Disk Substrates 269</p> <p>4.1.5 Liquid Crystal Displays 273</p> <p>4.2 Consumer Applications 273</p> <p>4.2.1 β-Spodumene Solid-Solution Glass-Ceramic 273</p> <p>4.2.2 β-Quartz Solid-Solution Glass-Ceramic 274</p> <p>4.3 Optical Applications 279</p> <p>4.3.1 Telescope Mirrors 279</p> <p>4.3.1.1 Requirements for Their Development 279</p> <p>4.3.1.2 Zerodur<sup>®</sup> Glass-Ceramics 279</p> <p>4.3.2 Integrated Lens Arrays 281</p> <p>4.3.3 Applications for Luminescent Glass-Ceramics 283</p> <p>4.3.3.1 Cr-Doped Mullite for Solar Concentrators 283</p> <p>4.3.3.2 Cr-Doped Gahnite Spinel for Tunable Lasers and Optical Memory Media 286</p> <p>4.3.3.3 Rare-Earth Doped Oxyfluorides for Amplification, Upconversion, and Quantum Cutting 287</p> <p>4.3.3.4 Chromium (Cr<sup>4+</sup>)-Doped Forsterite, β-Willemite, and Other Orthosilicates for Broad Wavelength Amplification 293</p> <p>4.3.3.5 Ni<sup>2+</sup>-Doped Gallate Spinel for Amplification and Broadband Infrared Sources 295</p> <p>4.3.3.6 YAG Glass-Ceramic Phosphor for White LED 300</p> <p>4.3.4 Optical Components 300</p> <p>4.3.4.1 Glass-Ceramics for Fiber Bragg Grating Athermalization 300</p> <p>4.3.4.2 Laser-Induced Crystallization for Optical Gratings andWaveguides 306</p> <p>4.3.4.3 Glass-Ceramic Ferrule for Optical Connectors 307</p> <p>4.3.4.4 Applications for Transparent ZnO Glass-Ceramics with Controlled Infrared Absorbance and Microwave Susceptibility 308</p> <p>4.4 Medical and Dental Glass-Ceramics 309</p> <p>4.4.1 Glass-Ceramics for Medical Applications 310</p> <p>4.4.1.1 CERABONE<sup>®</sup> 310</p> <p>4.4.1.2 CERAVITAL<sup>®</sup> 311</p> <p>4.4.1.3 BIOVERIT<sup>®</sup> 312</p> <p>4.4.2 Glass-Ceramics for Dental Restoration 313</p> <p>4.4.2.1 Moldable Glass-Ceramics for Metal-Free Dental Restorations 314</p> <p>4.4.2.2 Machinable Glass-Ceramics 324</p> <p>4.4.2.3 Fusion of Glass-Ceramics on High Toughness Sintered Ceramics 332</p> <p>4.4.2.4 Leucite-Apatite Glass-ceramic on Metal Frameworks and Metal-Free Restorations 335</p> <p>4.5 Electrical and Electronic Applications 339</p> <p>4.5.1 Insulators 339</p> <p>4.5.2 Electronic Packaging 340</p> <p>4.5.2.1 Requirements for Their Development 340</p> <p>4.5.2.2 Properties and Processing 341</p> <p>4.5.2.3 Applications 342</p> <p>4.5.3 Dielectric Glass-Ceramics for GHz Electronics 343</p> <p>4.6 Architectural Applications 345</p> <p>4.7 Coatings and Solders 347</p> <p>4.8 Glass-Ceramics for Energy Applications 348</p> <p>4.8.1 Glass-Ceramic Components for Batteries 349</p> <p>4.8.1.1 Glass-Ceramics as Cathodes for Lithium or Sodium Ion Batteries and Glass as Anodes 349</p> <p>4.8.1.2 Electrolytes 349</p> <p>4.8.2 Joining Materials for Solid Oxide Fuel Cell Components 350</p> <p>4.9 Application of Glass-Ceramic Principle to Functional Materials 352</p> <p>4.10 Forming Processes for Glass-Ceramics 352</p> <p>4.10.1 Pressing 352</p> <p>4.10.2 Casting 353</p> <p>4.10.3 Spinning (Centrifugal Casting) 353</p> <p>4.10.4 Rolling 354</p> <p>4.10.5 Float Process 354</p> <p>4.10.6 Direct Forming or Reforming of Glass-Ceramics 357</p> <p><b>5 Future Directions 358</b></p> <p>Appendix A: Twenty-one Figures of 23 Crystal Structures 360</p> <p>References 381</p> <p>Index 415</p>
<p><b>WOLFRAM HÖLAND</b> is retired from Ivoclar Vivadent AG (Liechtenstein) since 2016 but he is a consultant for this company. In 2018, he finished his activity as a Lecturer at the Department of Inorganic Chemistry, Eidgenössische Technische Hochschule (ETH) in Zürich, Switzerland. <p><b>GEORGE H. BEALL, P<small>H</small>D,</b> is a Corporate Fellow, retired, in the Science and Technology Division of Corning Incorporated, Corning, New York. He is a Distinguished Life Member of the American Ceramic Society. <p>Between them, Drs. Höland and Beall hold over 200 US patents, over 200 publications, and 10 textbooks.
<p><b>An updated edition of the essential guide to the technology of glass-ceramic technology</b> <p>Glass-ceramic materials share many properties with both glass and more traditional crystalline ceramics. The revised third edition of <i>Glass-Ceramic Technology</i> offers a comprehensive and updated guide to the various types of glass-ceramic materials, the methods of development, and the myriad applications for glass-ceramics. Written in an easy-to-use format, the book includes an explanation of the new generation of glass-ceramics. <p>The updated third edition explores glass-ceramics new materials and properties and reviews the expanding regions for applying these materials. The new edition contains current information on glass/glass-ceramic forming in general and explores specific systems, crystallization mechanisms and products such as: ion exchange strengthening of glass-ceramics, glass-ceramics for mobile phones, new glass-ceramics for energy, and new glass-ceramics for optical and architectural application. It also contains a new section on dental materials and twofold controlled crystallization. This revised guide: <ul> <li>Offers an important new section on glass/glass ceramic forming</li> <li>Includes the fundamentals and the application of nanotechnology as related to glass-ceramic technology</li> <li>Reviews the development of the various types of glass-ceramic materials</li> <li>Covers information on new glass-ceramics with new materials and properties and outlines the opportunities for applying these materials</li> </ul> <p>Written for students, young scientists, ceramic and materials engineers, managers, and designers in the ceramic and glass industry, the third edition of <i>Glass-Ceramic Technology</i> features new sections on Glass/Glass-Ceramic Forming and new Glass-Ceramics as well as expanded sections on dental materials and twofold controlled crystallization.

Diese Produkte könnten Sie auch interessieren:

Chemistry for the Protection of the Environment 4
Chemistry for the Protection of the Environment 4
von: Robert Mournighan, Marzenna R. Dudzinska, John Barich, Marjorie A. Gonzalez, Robin K. Black
PDF ebook
213,99 €
Wörterbuch Labor / Laboratory Dictionary
Wörterbuch Labor / Laboratory Dictionary
von: Klaus Roth, Theodor C.H. Cole
PDF ebook
36,99 €