Details

Hybrid Fiber Composites


Hybrid Fiber Composites

Materials, Manufacturing, Process Engineering
1. Aufl.

von: Anish Khan, Sanjay Mavinkere Rangappa, Mohammad Jawaid, Suchart Siengchin, Abdullah M. Asiri

142,99 €

Verlag: Wiley-VCH
Format: EPUB
Veröffentl.: 02.07.2020
ISBN/EAN: 9783527824588
Sprache: englisch
Anzahl Seiten: 438

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Fiber-reinforced composites are exceptionally versatile materials whose properties can be tuned to exhibit a variety of favorable properties such as high tensile strength and resistance against wear or chemical and thermal influences. Consequently, these materials are widely used in various industrial fields such as the aircraft, marine, and automobile industry.<br> <br> After an overview of the general structures and properties of hybrid fiber composites, the book focuses on the manufacturing and processing of these materials and their mechanical performance, including the elucidation of failure mechanisms. A comprehensive chapter on the modeling of hybrid fiber composites from micromechanical properties to macro-scale material behavior is followed by a review of applications of these materials in structural engineering, packaging, and the automotive and aerospace industries.<br>
<p>About the Editors xix</p> <p><b>1 Natural and Synthetic Fibers for Hybrid Composites </b><b>1<br /></b><i>Brijesh Gangil, Lalit Ranakoti, Shashikant Verma, Tej Singh, and Sandeep Kumar</i></p> <p>1.1 Introduction 1</p> <p>1.2 Natural Fibers 2</p> <p>1.3 Microstructure of Natural Fibers 3</p> <p>1.4 Natural Fiber-Reinforced Polymer Composites 3</p> <p>1.4.1 Synthetic Fibers 7</p> <p>1.4.2 Glass Fibers 8</p> <p>1.4.3 Carbon Fibers 8</p> <p>1.4.4 Kevlar or Aramid Fibers 9</p> <p>1.4.5 Comparison Between Natural and Synthetic Fibers 9</p> <p>1.5 Hybrid Fiber-Based Polymer Composites 10</p> <p>1.5.1 Applications 11</p> <p>1.6 Conclusion 12</p> <p>References 13</p> <p><b>2 Effect of Process Engineering on the Performance of Hybrid Fiber Composites </b><b>17<br /></b><i>Madhu Puttegowda, Yashas Gowda Thyavihalli Girijappa, Sanjay Mavinkere Rangappa, Jyotishkumar Parameswaranpillai, and Suchart Siengchin</i></p> <p>2.1 Introduction 17</p> <p>2.2 Fibers 18</p> <p>2.3 Polymers 20</p> <p>2.4 Hybrid Polymer Composites 21</p> <p>2.5 Fiber Extraction Methods 22</p> <p>2.6 Fiber Treatments 22</p> <p>2.7 Processing Methods of Hybrid Composites 24</p> <p>2.7.1 Pultrusion 24</p> <p>2.7.2 Hand Lay-up/Wet Lay-up 25</p> <p>2.7.3 Vacuum Bagging 25</p> <p>2.7.4 Filament Winding 26</p> <p>2.7.5 Resin Transfer Molding 27</p> <p>2.7.6 Compression Molding 27</p> <p>2.7.7 Injection Molding 28</p> <p>2.8 Application of Each Hybrid Polymer Composite Processing Methods 29</p> <p>2.8.1 Pultrusion 29</p> <p>2.8.2 Hand Lay-up 29</p> <p>2.8.3 Vacuum Bagging 31</p> <p>2.8.4 Filament Winding 31</p> <p>2.8.5 Resin Transfer Molding 31</p> <p>2.8.6 Compression Molding 31</p> <p>2.8.7 Injection Molding 32</p> <p>2.9 Conclusion 32</p> <p>References 32</p> <p><b>3 Mechanical and Physical Test of Hybrid Fiber Composites </b><b>41<br /></b><i>Mohit Hemath, Arul Mozhi Selvan Varadhappan, Hemath Kumar Govindarajulu, Sanjay Mavinkere Rangappa, Suchart Siengchin, and Harinandan Kumar</i></p> <p>3.1 Introduction 41</p> <p>3.2 Materials and Methods 44</p> <p>3.2.1 Materials 44</p> <p>3.2.2 Extraction of Sugarcane Nanocellulose Fiber (SNCF) 44</p> <p>3.2.3 Synthesis of Al–SiC Nanoparticles 44</p> <p>3.2.4 Fabrication of SNCF/Al–SiC Vinyl Ester Nanocomposites 44</p> <p>3.2.5 Design of Experiments (DOE) 45</p> <p>3.2.6 Development of Experimental Models and Optimization 45</p> <p>3.2.7 Characterization on SNCF/Al–SiC Vinyl Ester Hybrid Nanocomposites 46</p> <p>3.2.7.1 FTIR Spectra and XRD Curves 46</p> <p>3.2.7.2 Physical Properties 47</p> <p>3.2.7.3 Mechanical Properties 47</p> <p>3.2.7.4 Viscoelastic Properties 48</p> <p>3.2.7.5 Morphological Properties 48</p> <p>3.3 Results and Discussion 48</p> <p>3.3.1 Optimization 48</p> <p>3.3.2 Maximization 52</p> <p>3.3.3 FTIR and XRD Curves 54</p> <p>3.3.4 Mechanical Properties 55</p> <p>3.3.4.1 Flexural Properties 55</p> <p>3.3.4.2 Morphological Properties 57</p> <p>3.3.4.3 Compression Properties 58</p> <p>3.3.4.4 Tensile Properties 58</p> <p>3.3.5 Viscoelastic Properties 58</p> <p>3.3.5.1 Storage Modulus 58</p> <p>3.3.5.2 Loss Modulus 60</p> <p>3.3.5.3 Damping Factor 60</p> <p>3.3.5.4 Glass Transition Temperature 60</p> <p>3.3.6 Impact Strength 61</p> <p>3.3.7 Vickers Hardness 62</p> <p>3.3.8 Physical Properties 62</p> <p>3.4 Conclusion 63</p> <p>References 63</p> <p><b>4 Experimental Investigations in the Drilling of Hybrid Fiber Composites </b><b>69<br /></b><i>Sathish Kumar Palaniappan, Samir Kumar Pal, Rajasekar Rathanasamy, Gobinath Velu Kaliyannan, and Moganapriya Chinnasamy</i></p> <p>4.1 Introduction 69</p> <p>4.2 Characteristics of Drilling 70</p> <p>4.3 Hybrid Fiber Composites 70</p> <p>4.4 Machining Limitation on Hybrid Fiber Composite Drilling 71</p> <p>4.5 Investigation of Hybrid Fiber Composites Drilling 71</p> <p>4.5.1 Condition for Hybrid Composites Drill 72</p> <p>4.5.2 Factors Affecting Drilling 72</p> <p>4.5.3 Drilling of GF-Reinforced Hybrid Composites 73</p> <p>4.5.4 Survey on NF-Reinforced Hybrid Composites Drilling 75</p> <p>4.5.5 Drilling of CF Reinforced Hybrid Composites 77</p> <p>4.6 Conclusion 79</p> <p>References 79</p> <p><b>5 Fracture Analysis on Silk and Glass Fiber-Reinforced Hybrid Composites </b><b>87<br /></b><i>Gangaplara Basavarajappa Manjunatha and Kurki Nagaraja Bharath</i></p> <p>5.1 Introduction 87</p> <p>5.2 Materials and Methods 88</p> <p>5.2.1 Materials and Specimen Preparation 88</p> <p>5.2.2 Compact Tension Shear (CTS) Test 90</p> <p>5.2.3 Single-Edge Notched Bend (SENB) 90</p> <p>5.3 Results and Discussion 92</p> <p>5.3.1 Compact Tension Shear (CTS) Test 92</p> <p>5.3.2 Mode I, Mode II, and Mixed Mode Fracture Toughness for Different Loading Angle 93</p> <p>5.3.3 Single-Edge Notched Bend (SENB) 93</p> <p>5.3.4 Fracture Toughness of SENB Test 95</p> <p>5.4 Conclusion 96</p> <p>References 96</p> <p><b>6 Failure Mechanisms of Fiber Composites </b><b>99</b><b>ă<br /></b><i>C</i><i>ăt</i><i>ălin Iulian Pruncu and Maria-Luminita Scutaru</i></p> <p>6.1 Introduction 99</p> <p>6.2 Industrial Benefits and Applications 100</p> <p>6.3 Materials for Reinforcing 104</p> <p>6.3.1 Composites Reinforced with Continuous Fibers 104</p> <p>6.3.2 Composites Reinforced with Discontinuous Fibers 105</p> <p>6.3.3 Composites Reinforced with Fillers 106</p> <p>6.4 Resin Type 106</p> <p>6.4.1 Epoxy Resins 106</p> <p>6.4.2 Formaldehyde Resins 107</p> <p>6.4.3 Polyurethane Resins 107</p> <p>6.4.4 Polyester Resins 108</p> <p>6.4.5 Silicone Resins 108</p> <p>6.5 Interfacial of Composite Structure 109</p> <p>6.6 Micromechanics 110</p> <p>6.6.1 Mechanical Properties 110</p> <p>6.6.1.1 Coefficients of Thermal Expansion and Heat Transfer Properties 111</p> <p>6.7 Short Overview of Specific Failure Modes 112</p> <p>6.8 Future Perspective 113</p> <p>6.9 Conclusions 114</p> <p>References 114</p> <p><b>7 Ballistic Behavior of Fiber Composites </b><b>117<br /></b><i>Ignacio Rubio, Josué Aranda Ruiz, Marcos Rodriguez Millan, José Antonio Loya, and Marta Maria Moure</i></p> <p>7.1 Introduction 117</p> <p>7.2 High-Velocity Impact Test 119</p> <p>7.2.1 Material 119</p> <p>7.2.2 Experimental Setup 119</p> <p>7.2.3 Analysis and Results 121</p> <p>7.2.3.1 Ballistic Curves 121</p> <p>7.2.3.2 Failure Modes 123</p> <p>7.2.3.3 Back-Face Displacement 123</p> <p>7.3 Computational Methods 124</p> <p>7.4 Conclusions 126</p> <p>References 127</p> <p><b>8 Mechanical Behavior of Synthetic/Natural Fibers in Hybrid Composites </b><b>129<br /></b><i>Navasingh Rajesh Jesudoss Hynes, Ramakrishnan Sankaranarayanan, Jegadeesaperumal Senthil Kumar, Sanjay Mavinkere Rangappa, and Suchart Siengchin</i></p> <p>8.1 Introduction 129</p> <p>8.2 Impact Strength of Natural Fiber (Flax), Synthetic Fiber (Carbon), and Hybrid (Carbon/Flax) Composites 130</p> <p>8.3 Kenaf/Aramid (Epoxy) Hybrid Composites with Different Fiber Orientation 132</p> <p>8.4 Impact Strength of Carbon/Flax (Epoxy) Hybrid Composites with Different Fiber Orientation 134</p> <p>8.5 Comparison of Absorbed Impact Energy of Different Hybrid Composites 135</p> <p>8.6 Comparison of Strength of Natural Fiber (Ramie), Synthetic Fiber (Glass), and Hybrid (Ramie/Glass) Composites 137</p> <p>8.6.1 Tensile Strength of Natural Fiber (Ramie), Synthetic Fiber (Glass), and Hybrid (Ramie/Glass) Composites 138</p> <p>8.6.2 Flexural Strength of Natural Fiber (Ramie), Synthetic Fiber (Glass), and Hybrid (Ramie/Glass) Composites 139</p> <p>8.6.3 Impact Strength of Natural Fiber (Ramie), Synthetic Fiber (Glass), and Hybrid (Ramie/Glass) Composites 140</p> <p>8.7 Summary and Outlook 141</p> <p>References 143</p> <p><b>9 Bast Fiber-Based Polymer Composites </b><b>147<br /></b><i>Sandeep Kumar, Brijesh Gangil, Krishan Kant Singh Mer, Manoj Kumar Gupta, and Vinay Kumar Patel</i></p> <p>9.1 Introduction 147</p> <p>9.1.1 Bast Fiber as Reinforcing Material 149</p> <p>9.2 Polymer Composites Reinforced with Bast Fibers 149</p> <p>9.2.1 Polymer Composites Reinforced with Flax Fibers 150</p> <p>9.2.2 Polymer Composites Reinforced with Grewia Optiva Fiber 152</p> <p>9.2.3 Polymer Composites Reinforced with Hemp Fiber 155</p> <p>9.2.4 Polymer Composites Reinforced with Nettle Fiber 156</p> <p>9.2.5 Polymer Composites Reinforced with Jute Fiber 158</p> <p>9.3 Applications of Polymer Composites Reinforced with Bast Fibers 160</p> <p>9.4 Conclusion 161</p> <p>References 161</p> <p><b>10 Flame-Retardant Balsa Wood/GFRP Sandwich Composites, Mechanical Evaluation, and Comparisons with Other Sandwich Composites </b><b>169<br /></b><i>Subin Shaji George, Vivek Arjuna, Venkata Prudhvi Pallapolu, and Padmanabhan Krishnan</i></p> <p>10.1 Introduction 169</p> <p>10.2 Literature Survey 171</p> <p>10.2.1 Sandwich Composite Structure and Properties 171</p> <p>10.2.2 Knowledge Gained from the Literature Review 172</p> <p>10.2.3 Gaps Identified from Literature Survey 172</p> <p>10.2.4 Objective of the Project 173</p> <p>10.2.5 Motivation 173</p> <p>10.3 Methodology and Experimental Work 173</p> <p>10.3.1 Hand Lay-up Procedure 173</p> <p>10.3.2 Vacuum Bagging 174</p> <p>10.3.3 Testing and Evaluations 175</p> <p>10.3.4 Technical Specification 177</p> <p>10.3.5 Design Approach Details 177</p> <p>10.3.6 Codes and Standards 178</p> <p>10.3.7 Fabrication Methodology 178</p> <p>10.4 Results and Discussion 179</p> <p>10.4.1 Compression Testing 179</p> <p>10.4.1.1 Flatwise Transverse Grain Test 179</p> <p>10.4.1.2 Edgewise Transverse Grain Compression 180</p> <p>10.4.1.3 Edgewise Longitudinal Grain Compression 182</p> <p>10.4.1.4 Discussion and Comment (Compression Test) 183</p> <p>10.4.2 Three-Point Bending Test (Flexural Test) 183</p> <p>10.4.2.1 Experimental Results for Three-Point Bending Test of Balsa Wood 184</p> <p>10.4.2.2 Experimental Results for Three-Point Bending Test of Composite of Skin-to-Core Ratio 1 : 1 184</p> <p>10.4.2.3 Experimental Results for Three-Point Bending Test of Composite of Skin-to-Core Ratio 2 : 1 184</p> <p>10.4.2.4 Experimental Result for Three-Point Bending Test of Composite of Skin-to-Core Ratio 3 : 1 187</p> <p>10.4.2.5 Experimental Results for Three-Point Bending Test of Composite of Skin-to-Core Ratio 4 : 1 187</p> <p>10.4.2.6 Experimental Results for Three-Point Bending Test of Composite of Skin-to-Core Ratio 5 : 1 188</p> <p>10.4.2.7 Mean, Minimum, and Maximum Mechanical Properties of Sandwich Composites 188</p> <p>10.4.2.8 Mechanical Properties of Sandwich Composite for Different Core Materials 189</p> <p>10.4.2.9 Discussion and Comments (Flexural Testing/Three-Point Bending Test) 189</p> <p>10.4.3 Types and Modes of Failure During the Test on Sandwich Composites 190</p> <p>10.5 Conclusions 192</p> <p>10.6 Scope for Future Work 193</p> <p>Acknowledgment 193</p> <p>List of Symbols and Abbreviations 193</p> <p>References 193</p> <p><b>11 Biocomposites Reinforced with Animal and Regenerated Fibers </b><b>197<br /></b><i>Manickam Ramesh, Chinnaiyan Deepa, Sanjay Mavinkere Rangappa, and Suchart Siengchin</i></p> <p>11.1 Introduction 197</p> <p>11.2 Animal Fibers 198</p> <p>11.2.1 Silk 199</p> <p>11.2.2 Wool 200</p> <p>11.2.3 Chicken Feather 201</p> <p>11.3 Regenerated Fibers 202</p> <p>11.3.1 Lyocell 205</p> <p>11.3.2 Viscose 206</p> <p>11.3.3 Regenerated Keratin Fibers 207</p> <p>11.4 Industrial Applications 207</p> <p>11.5 Summary and Discussion 207</p> <p>11.6 Conclusions and Scope for Future Research 208</p> <p>References 208</p> <p><b>12 Effect of Glass and Banana Fiber Mat Orientation and Number Layers on Mechanical Properties of Hybrid Composites </b><b>217<br /></b><i>T.P. Sathishkumar, S. Ramakrishnan, and P. Navaneethakrishnan</i></p> <p>12.1 Introduction 217</p> <p>12.2 Materials 220</p> <p>12.3 Preparation of Composites 221</p> <p>12.4 Characterization 222</p> <p>12.5 Results and Discussion 224</p> <p>12.5.1 Effect of Number and Orientation of Layers on Tensile Properties 224</p> <p>12.5.2 Effect of Number and Orientation of Layers on Flexural Properties 225</p> <p>12.5.3 Effect of Number and Orientation of Layers on Impact Properties 228</p> <p>12.6 Conclusion 229</p> <p>References 230</p> <p><b>13 Characterization of Mechanical and Tribological Properties of Vinyl Ester-Based Hybrid Green Composites </b><b>233<br /></b><i>B. Suresha, R. Hemanth, and P.A. Udaya Kumar</i></p> <p>13.1 Introduction 233</p> <p>13.2 Materials and Methods 237</p> <p>13.2.1 Matrix 237</p> <p>13.2.2 Reinforcements 238</p> <p>13.2.2.1 Coir Fiber and Coconut Shell Powder 238</p> <p>13.2.2.2 Aramid Fiber 239</p> <p>13.2.3 Chemical Treatment 239</p> <p>13.2.4 Fabrication of Vinyl Ester-Based Hybrid Composites 239</p> <p>13.3 Characterization 240</p> <p>13.3.1 Physicomechanical Characterizations 240</p> <p>13.3.1.1 Hardness 240</p> <p>13.3.1.2 Tensile Testing 241</p> <p>13.3.1.3 Flexural Testing 241</p> <p>13.3.1.4 Impact Testing 242</p> <p>13.3.2 Wear Testing 242</p> <p>13.3.3 Fractography Analysis Using Scanning Electron Microscope 243</p> <p>13.4 Surface Treatment of Reinforcements 244</p> <p>13.5 Results and Discussion 245</p> <p>13.5.1 Hardness of Vinyl Ester and Their Hybrid Composites 245</p> <p>13.5.2 Tensile Properties of Vinyl Ester and Their Hybrid Composites 246</p> <p>13.5.2.1 Fractography Analysis 247</p> <p>13.5.3 Flexural Properties of Vinyl Ester and Their Hybrid Composites 248</p> <p>13.5.3.1 Fractography Analysis 248</p> <p>13.5.4 Impact Strength of Vinyl Ester and Their Hybrid Composites 249</p> <p>13.5.4.1 Fractography Analysis 250</p> <p>13.5.5 Tribology of Vinyl Ester Hybrid Composites 251</p> <p>13.5.5.1 Effect of Fiber and Filler on Coefficient of Friction 252</p> <p>13.5.5.2 Effects of Sliding Distance and Applied Load on Specific Wear Rate 254</p> <p>13.5.5.3 Worn Surface Morphology 256</p> <p>13.6 Conclusions 260</p> <p>References 260</p> <p><b>14 Thermomechanical Characterization of Vacuum Resin Infusion-Molded Ceramic Rock-Derived Natural Wool-Reinforced Epoxy and Cashew Nut Shell Liquid-Based Composites </b><b>265<br /></b><i>Nikunj Viramgama, Anmol Garg, Kevin Thomas, and Padmanabhan Krishnan</i></p> <p>14.1 Introduction 265</p> <p>14.1.1 Natural Fibers as a Substitute for Synthetic Fibers 265</p> <p>14.1.2 Biocomposites 265</p> <p>14.1.3 Rockwool Fibers 266</p> <p>14.1.4 Composites with Rockwool Fiber as Reinforcement 266</p> <p>14.1.5 Resin or Matrix Materials 267</p> <p>14.1.6 Gaps in the Literature Review 267</p> <p>14.2 Methodology and Approach 267</p> <p>14.2.1 Fabrication and Experimentation 268</p> <p>14.3 Results and Discussion 270</p> <p>14.3.1 Energy-Dispersive X-ray Spectroscopy (EDS of Rockwool) 270</p> <p>14.3.2 Thermogravimetric Analysis (TGA of Rockwool) 272</p> <p>14.3.3 Differential Scanning Calorimetry of Rockwool 272</p> <p>14.3.4 Volume Fraction of Fabricated Composite 273</p> <p>14.3.4.1 Volume Fraction of Rockwool for Epoxy-Based Composite 273</p> <p>14.3.4.2 Volume Fraction of Rockwool Fiber for CNSL Composite 274</p> <p>14.3.5 Epoxy-Based Composite Tests and Analyses 274</p> <p>14.3.5.1 Tensile Test 274</p> <p>14.3.5.2 Compression Test 280</p> <p>14.3.5.3 Flexure Test 284</p> <p>14.3.6 Scanning Electron Microscopy (SEM) Analysis of Epoxy-Based Composites 289</p> <p>14.3.7 Rockwool/CNSL Composite Test Results 294</p> <p>14.3.7.1 Tensile Test Results 294</p> <p>14.3.7.2 Compression Test Results 297</p> <p>14.3.7.3 Flexure Test Results 299</p> <p>14.3.8 Scanning Electron Microscopy (SEM) Analysis of the CNSL-Based Composite 301</p> <p>14.3.9 Further Scope of Research 304</p> <p>Acknowledgments 305</p> <p>References 305</p> <p><b>15 Hydrogel Scaffold-Based Fiber Composites for Engineering Applications </b><b>307<br /></b><i>Ikram Ahmad, Jos</i><i>è Heriberto Oliveira do Nascimento, Sobia Tabassum, Amna Mumtaz, Sadia Khalid, and Awais Ahmad</i></p> <p>15.1 Introduction 307</p> <p>15.1.1 Hydrogels 307</p> <p>15.1.2 Hydrogels as Compared to Gels 308</p> <p>15.1.3 Classification of Hydrogels 308</p> <p>15.1.3.1 Hydrogel Origin 308</p> <p>15.1.3.2 Hydrogel Durability 308</p> <p>15.1.3.3 Hydrogel Response to Environmental Stimuli 309</p> <p>15.1.4 Methods of Preparation of Hydrogels 309</p> <p>15.1.4.1 Free Radical Polymerization 309</p> <p>15.1.4.2 Irradiation Cross-linking of Hydrogel Polymeric Precursors 310</p> <p>15.1.4.3 Chemical Cross-linking of Hydrogel Polymeric Precursors 310</p> <p>15.1.4.4 Physical Cross-linking of Hydrogel Polymeric Precursors 310</p> <p>15.1.5 Scaffold 311</p> <p>15.1.5.1 Biocompatibility 312</p> <p>15.1.5.2 Biodegradability 312</p> <p>15.1.5.3 Mechanical Properties 312</p> <p>15.1.5.4 Structure 312</p> <p>15.1.5.5 Nature 313</p> <p>15.2 Potential Applications of Hydrogels as Scaffold in Biomedical Application 313</p> <p>15.2.1 Hydrogel and Tissue Engineering 314</p> <p>15.2.2 Hydrogels as Carriers for Cell Transplantation 314</p> <p>15.2.3 Hydrogels as a Barrier Against Rest Enosis 314</p> <p>15.2.4 Hydrogels as Drug Depots 315</p> <p>15.3 Design Criteria for Hydrogel Scaffolds in Tissue Engineering 315</p> <p>15.3.1 Biodegradation 316</p> <p>15.3.2 Biocompatibility 316</p> <p>15.3.3 Pore Size and Porosity Extent 317</p> <p>15.3.4 Mechanical Characteristics 317</p> <p>15.3.5 Surface Characteristics 317</p> <p>15.3.6 Vascularization 318</p> <p>15.4 Hydrogel Scaffold: A Main Tool for Tissue Engineering 318</p> <p>15.4.1 Fabrication of Hydrogel Scaffolds for Tissue Engineering 318</p> <p>15.4.1.1 Emulsification 318</p> <p>15.4.2 Lyophilization 319</p> <p>15.4.2.1 Emulsification Lyophilization 320</p> <p>15.4.2.2 Solvent Casting Leaching 320</p> <p>15.4.2.3 Gas Foaming Leaching 320</p> <p>15.4.2.4 Photolithography 321</p> <p>15.4.2.5 Electrospinning 321</p> <p>15.4.2.6 Microfluidics 322</p> <p>15.4.2.7 Micromolding 322</p> <p>15.4.2.8 Three-Dimensional Organ/Tissue Printing 323</p> <p>15.5 Hydrogel Scaffolds for Cardiac Tissue Engineering 324</p> <p>15.6 Hydrogel Scaffold Fabrication for Skin Regeneration 326</p> <p>15.6.1 Molding Scaffolds 326</p> <p>15.6.2 Nanofiber Fabrication Scaffolds 326</p> <p>15.6.3 Three-Dimensional (3D) Printing 327</p> <p>15.7 Osteochondral Tissue Regeneration 327</p> <p>15.7.1 Single-Layer Gelatinous Scaffolds 327</p> <p>15.7.2 Multilayer Gelatinous Scaffolds 328</p> <p>15.7.3 Gel/Fiber Scaffolds 329</p> <p>15.7.4 Fabrication of Gradient Hydrogels 330</p> <p>15.7.5 Fabrication of Gradient Hydrogel/Fiber Composites 331</p> <p>15.8 Biopolymer-Based Hydrogel Systems 332</p> <p>15.8.1 Polysaccharide Hydrogels as Scaffolds 332</p> <p>15.8.1.1 Chondroitin Sulfate 332</p> <p>15.8.1.2 Hyaluronic Acid 333</p> <p>15.8.1.3 Chitosan 334</p> <p>15.8.1.4 Cellulose Derivatives 335</p> <p>15.8.1.5 Alginate 336</p> <p>15.8.1.6 Collagen 337</p> <p>15.8.1.7 Gelatin 337</p> <p>15.8.1.8 Elastin 339</p> <p>15.8.1.9 Fibroin 339</p> <p>15.9 Summary 340</p> <p>References 340</p> <p><b>16 Experimental Analysis of Styrene, Particle Size, and Fiber Content in the Mechanical Properties of Sisal Fiber Powder Composites </b><b>351<br /></b><i>Katiá Melo, Thiago Santos, Caroliny Santos, Rubens Fonseca, Nestor Dantas, and Marcos Aquino</i></p> <p>16.1 Introduction 351</p> <p>16.2 Materials and Methods 352</p> <p>16.3 Results and Discussion 353</p> <p>16.4 Conclusions 364</p> <p>Acknowledgments 364</p> <p>References 365</p> <p><b>17 Influence of Fiber Content in the Water Absorption and Mechanical Properties of Sisal Fiber Powder Composites </b><b>369<br /></b><i>Katiá Melo, Thiago Santos, Caroliny Santos, Rubens Fonseca, Nestor Dantas, and Marcos Aquino</i></p> <p>17.1 Introduction 369</p> <p>17.2 Materials and Methods 370</p> <p>17.2.1 Mechanical Test 370</p> <p>17.2.2 Water Absorption 370</p> <p>17.3 Results and Discussion 371</p> <p>17.4 Conclusions 376</p> <p>Acknowledgments 377</p> <p>References 377</p> <p><b>18 Recent Advances of Hybrid Fiber Composites for Various Applications </b><b>381<br /></b><i>Praveen Kumar Alagesan</i></p> <p>18.1 Introduction 381</p> <p>18.2 What is a Hybrid Composite? 384</p> <p>18.3 Hybrid Biocomposites 386</p> <p>18.4 Hybrid Nanobiocomposites 388</p> <p>18.5 Potential Applications of Hybrid Composites in Various Applications 389</p> <p>18.5.1 Aerospace Applications 389</p> <p>18.5.2 Automotive Applications 391</p> <p>18.5.3 Ballistic Applications 394</p> <p>18.5.4 Impact Loading Applications 395</p> <p>18.6 Challenges, Prospects, and Future Trends 397</p> <p>18.7 Conclusions 398</p> <p>Acknowledgments 398</p> <p>References 398</p> <p>Index 405</p>
<p><b><i>Anish Khan, PhD,</i></b> <i>is Assistant Professor in the Chemistry Department at the Faculty of Science of the King Abdulaziz University in Jeddah, Saudi Arabia. His research interests are in the fields of polymer nanocomposites, micro- and nanotechnology, and nanomaterials in electroanalytical chemistry.</i> <p><b><i>Sanjay Mavinkere Rangappa, PhD,</i></b> <i>is Research Scientist in the Natural Composites Research Group Lab, Academic Enhancement Department at the King Mongkut's University of Technology North Bangkok, Thailand. His current research areas include natural fiber composites, polymer composites and advanced material technology.</i> <p><b><i>Mohammad Jawaid, PhD,</i></b> <i>is Associate Professor at the Biocomposite Technology Laboratory, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, in Malaysia. His research interests include reinforced polymer composites and advanced materials.</i> <p><b><i>Suchart Siengchin, Dr.-Ing. habil.,</i></b> <i>is President of King Mongkut's University of Technology North Bangkok (KMUTNB), Thailand. His research is focused on polymer matrix composites, biocomposites, polymer tribology, and tribology of natural fiber composites.</i> <p><b><i>Abdullah Mohamed Asiri, PhD,</i></b> <i>is Director of The Center of Excellence for Advanced Materials Research (CEAMR) at the Faculty of Science of the King Abdulaziz University, Jeddah, Saudi Arabia. His research interest include advanced materials, nanochemistry, nanotechnology and polymers composites.</i>
<p><b>Offers a one-stop resource for understanding industrial-scale use of fiber composites</b> <p>Fiber-reinforced composites are exceptionally versatile materials whose properties can be tuned to exhibit a variety of favorable properties such as high tensile strength and resistance against wear or chemical and thermal influences. This book provides comprehensive coverage of hybrid fiber composites- discussing their properties, creation, and various applications. <p><i>Hybrid Fiber Composites: Materials, Manufacturing, Process Engineering</i> begins with an overview of the general structures and properties of hybrid fiber composites. It then goes on to focus on the manufacturing and processing of these materials and their mechanical performance, including the elucidation of failure mechanisms. A comprehensive chapter on the modeling of hybrid fiber composites from micromechanical properties to macro-scale material behavior is followed by a review of applications of these materials in structural engineering, packaging, and the automotive and aerospace industries. Other chapters look at: fracture analysis on silk and glass fiber reinforced hybrid composites; biocomposites reinforced with animal and regenerated fibers; influence of styrene, particle size and fiber content in the mechanical properties of sisal fiber powder composites; hydrogel scaffold base fiber composite for engineering application; and more. <ul> <li>Devoted to one of the most important materials classes for materials engineering applications</li> <li>Covers hybrid fiber composites from preparation, processing and characterization to modeling</li> <li>Provides ready-to-use information for materials scientists and engineers working in industries using fiber composites</li> </ul> <p><i>Hybrid Fiber Composites</i> is an important book for all materials scientists, process engineers, and mechanical engineers involved in the research, manufacturing, or use of these versatile.

Diese Produkte könnten Sie auch interessieren:

Chemistry for the Protection of the Environment 4
Chemistry for the Protection of the Environment 4
von: Robert Mournighan, Marzenna R. Dudzinska, John Barich, Marjorie A. Gonzalez, Robin K. Black
PDF ebook
213,99 €
Wörterbuch Labor / Laboratory Dictionary
Wörterbuch Labor / Laboratory Dictionary
von: Klaus Roth, Theodor C.H. Cole
PDF ebook
36,99 €