Details

Hydrogen and Syngas Production and Purification Technologies


Hydrogen and Syngas Production and Purification Technologies


1. Aufl.

von: Ke Liu, Chunshan Song, Velu Subramani

123,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 19.11.2009
ISBN/EAN: 9780470561249
Sprache: englisch
Anzahl Seiten: 560

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<ul> <li>Covers the timely topic of fuel cells and hydrogen-based energy from its fundamentals to practical applications</li> <li>Serves as a resource for practicing researchers and as a text in graduate-level programs</li> <li>Tackles crucial aspects in light of the new directions in the energy industry, in particular how to integrate fuel processing into contemporary systems like nuclear and gas power plants</li> <li>Includes homework-style problems</li> </ul>
<p>Preface xiii</p> <p>Contributors xv</p> <p><b>1. Introduction to Hydrogen and Syngas Production and Purification Technologies 1<br /></b><i>Chunshan Song</i></p> <p>1.1 Importance of Hydrogen and Syngas Production 1</p> <p>1.2 Principles of Syngas and Hydrogen Production 4</p> <p>1.3 Options for Hydrogen and Syngas Production 6</p> <p>1.4 Hydrogen Energy and Fuel Cells 8</p> <p>1.5 Fuel Processing for Fuel Cells 9</p> <p>1.6 Sulfur Removal 10</p> <p>1.7 CO<sub>2</sub> Capture and Separation 11</p> <p>1.8 Scope of the Book 11</p> <p>Acknowledgments 12</p> <p>References 12</p> <p><b>2. Catalytic Steam Reforming Technology for the Production of Hydrogen and Syngas 14<br /></b><i>Velu Subramani, Pradeepkumar Sharma, Lingzhi Zhang, and Ke Liu</i></p> <p>2.1 Introduction 14</p> <p>2.2 Steam Reforming of Light Hydrocarbons 17</p> <p>2.2.1 Steam Reforming of Natural Gas 17</p> <p>2.2.2 Steam Reforming of C<sub>2</sub>–C<sub>4</sub> Hydrocarbons 36</p> <p>2.3 Steam Reforming of Liquid Hydrocarbons 46</p> <p>2.3.1 Chemistry 46</p> <p>2.3.2 Thermodynamics 47</p> <p>2.3.3 Catalyst 52</p> <p>2.3.4 Kinetics 58</p> <p>2.3.5 Mechanism 61</p> <p>2.3.6 Prereforming 61</p> <p>2.4 Steam Reforming of Alcohols 65</p> <p>2.4.1 Steam Reforming of Methanol (SRM) 65</p> <p>2.4.2 Steam Reforming of Ethanol (SRE) 77</p> <p>2.5 Carbon Formation and Catalyst Deactivation 106</p> <p>2.6 Recent Developments in Reforming Technologies 109</p> <p>2.6.1 Microreactor Reformer 109</p> <p>2.6.2 Plate Reformer 110</p> <p>2.6.3 Membrane Reformer 110</p> <p>2.6.4 Plasma Reforming (PR) 112</p> <p>2.7 Summary 112</p> <p>References 112</p> <p><b>3. Catalytic Partial Oxidation and Autothermal Reforming 127<br /></b><i>Ke Liu, Gregg D. Deluga, Anders Bitsch-Larsen, Lanny D. Schmidt, and Lingzhi Zhang</i></p> <p>3.1 Introduction 127</p> <p>3.2 Natural Gas Reforming Technologies: Fundamental Chemistry 130</p> <p>3.2.1 ATR 130</p> <p>3.2.2 Homogeneous POX 132</p> <p>3.2.3 CPO 133</p> <p>3.3 Development/Commercialization Status of ATR, POX, and CPO Reformers 136</p> <p>3.4 CPO Catalysts 138</p> <p>3.4.1 Nickel-Based CPO Catalysts 138</p> <p>3.4.2 Precious Metal CPO Catalysts 142</p> <p>3.5 CPO Mechanism and Kinetics 146</p> <p>3.5.1 Ni Catalyst Mechanism and Reactor Kinetics Modeling 146</p> <p>3.5.2 Precious Metal Catalyst Mechanism and Reactor Kinetics Modeling 147</p> <p>3.6 Start-Up and Shutdown Procedure of CPO 149</p> <p>3.7 CPO of Renewable Fuels 150</p> <p>3.8 Summary 151</p> <p>Acknowledgments 151</p> <p>References 151</p> <p><b>4. Coal Gasification 156<br /></b><i>Ke Liu, Zhe Cui, and Thomas H. Fletcher</i></p> <p>4.1 Introduction to Gasification 156</p> <p>4.2 Coal Gasification History 158</p> <p>4.3 Coal Gasification Chemistry 160</p> <p>4.3.1 Pyrolysis Process 161</p> <p>4.3.2 Combustion of Volatiles 163</p> <p>4.3.3 Char Gasification Reactions 164</p> <p>4.3.4 Ash–Slag Chemistry 166</p> <p>4.4 Gasification Thermodynamics 169</p> <p>4.5 Gasification Kinetics 173</p> <p>4.5.1 Reaction Mechanisms and the Kinetics of the Boudouard Reaction 174</p> <p>4.5.2 Reaction Mechanisms and the Kinetics of the Water-Gas Reaction 175</p> <p>4.6 Classification of Different Gasifiers 176</p> <p>4.7 GE (Texaco) Gasification Technology with CWS Feeding 178</p> <p>4.7.1 Introduction to GE Gasification Technology 178</p> <p>4.7.2 GE Gasification Process 179</p> <p>4.7.3 Coal Requirements of the GE Gasifier 184</p> <p>4.7.4 Summary of GE Slurry Feeding Gasification Technology 186</p> <p>4.8 Shell Gasification Technology with Dry Feeding 187</p> <p>4.8.1 Introduction to Dry-Feeding Coal Gasification 187</p> <p>4.8.2 Shell Gasification Process 189</p> <p>4.8.3 Coal Requirements of Shell Gasification Process 193</p> <p>4.8.4 Summary of Dry-Feeding Shell Gasifier 194</p> <p>4.9 Other Gasification Technologies 195</p> <p>4.9.1 GSP Gasification Technology 195</p> <p>4.9.2 East China University of Science and Technology (ECUST) Gasifier 198</p> <p>4.9.3 TPRI Gasifier 199</p> <p>4.9.4 Fluidized-Bed Gasifiers 199</p> <p>4.9.5 ConocoPhillips Gasifier 202</p> <p>4.9.6 Moving-Bed and Fixed-Bed Gasifiers: Lurgi’s Gasification Technology 203</p> <p>4.9.7 Summary of Different Gasification Technologies 205</p> <p>4.10 Challenges in Gasification Technology: Some Examples 206</p> <p>4.10.1 High AFT Coals 206</p> <p>4.10.2 Increasing the Coal Concentration in the CWS 207</p> <p>4.10.3 Improved Performance and Life of Gasifier Nozzles 208</p> <p>4.10.4 Gasifier Refractory Brick Life 208</p> <p>4.10.5 Gasifier Scale-Up 209</p> <p>4.11 Syngas Cleanup 210</p> <p>4.12 Integration of Coal Gasification with Coal Polygeneration Systems 215</p> <p>References 216</p> <p><b>5. Desulfurization Technologies 219<br /></b><i>Chunshan Song and Xiaoliang Ma</i></p> <p>5.1 Challenges in Deep Desulfurization for Hydrocarbon Fuel Processing and Fuel Cell Applications 219</p> <p>5.2 HDS Technology 225</p> <p>5.2.1 Natural Gas 225</p> <p>5.2.2 Gasoline 226</p> <p>5.2.3 Diesel 233</p> <p>5.3 Adsorptive Desulfurization 243</p> <p>5.3.1 Natural Gas 244</p> <p>5.3.2 Gasoline 246</p> <p>5.3.3 Jet Fuel 256</p> <p>5.3.4 Diesel 258</p> <p>5.4 Post-Reformer Desulfurization: H2S Sorption 264</p> <p>5.4.1 H<sub>2</sub>S Sorbents 265</p> <p>5.4.2 H<sub>2</sub>S Adsorption Thermodynamics 268</p> <p>5.5 Desulfurization of Coal Gasification Gas 272</p> <p>5.5.1 Absorption by Solvents 275</p> <p>5.5.2 Hot and Warm Gas Cleanup 291</p> <p>5.6 ODS 293</p> <p>5.6.1 Natural Gas 293</p> <p>5.6.2 Liquid Hydrocarbon Fuels 295</p> <p>5.7 Summary 298</p> <p>References 300</p> <p><b>6. Water-Gas Shift Technologies 311<br /></b><i>Alex Platon and Yong Wang</i></p> <p>6.1 Introduction 311</p> <p>6.2 Thermodynamic Considerations 312</p> <p>6.3 Industrial Processes and Catalysts 313</p> <p>6.3.1 Ferrochrome Catalyst for HTS Reaction 313</p> <p>6.3.2 CuZn Catalysts for LTS Reaction 314</p> <p>6.3.3 CoMo Catalyst for LTS Reaction 314</p> <p>6.4 Reaction Mechanism and Kinetics 315</p> <p>6.4.1 Ferrochrome Catalyst 315</p> <p>6.4.2 CuZn-Based Catalyst 317</p> <p>6.4.3 CoMo Catalyst 317</p> <p>6.5 Catalyst Improvements and New Classes of Catalysts 318</p> <p>6.5.1 Improvements to the Cu- and Fe-Based Catalysts 318</p> <p>6.5.2 New Reaction Technologies 319</p> <p>6.5.3 New Classes of Catalysts 321</p> <p>References 326</p> <p><b>7. Removal of Trace Contaminants from Fuel Processing Reformate: Preferential Oxidation (Prox) 329<br /></b><i>Marco J. Castaldi</i></p> <p>7.1 Introduction 329</p> <p>7.2 Reactions of Prox 331</p> <p>7.3 General Prox Reactor Performance 333</p> <p>7.3.1 Multiple Steady-State Operation 337</p> <p>7.3.2 Water–Oxygen Synergy 339</p> <p>7.4 Catalysts Formulations 342</p> <p>7.5 Reactor Geometries 344</p> <p>7.5.1 Monolithic Reactors 345</p> <p>7.5.2 SCT Reactors 346</p> <p>7.5.3 Microchannel Reactors 349</p> <p>7.5.4 MEMS-Based Reactors 350</p> <p>7.6 Commercial Units 352</p> <p>Acknowledgments 353</p> <p>References 353</p> <p><b>8. Hydrogen Membrane Technologies and Application in Fuel Processing 357<br /></b><i>David Edlund</i></p> <p>8.1 Introduction 357</p> <p>8.2 Fundamentals of Membrane-Based Separations 358</p> <p>8.3 Membrane Purification for Hydrogen Energy and Fuel Cell Applications 363</p> <p>8.3.1 Product Hydrogen Purity 365</p> <p>8.3.2 Process Scale 367</p> <p>8.3.3 Energy Efficiency 368</p> <p>8.4 Membrane Modules for Hydrogen Separation and Purification 369</p> <p>8.5 Dense Metal Membranes 372</p> <p>8.5.1 Metal Membrane Durability and Selectivity 375</p> <p>8.6 Integration of Reforming and Membrane-Based Purification 378</p> <p>8.7 Commercialization Activities 380</p> <p>References 383</p> <p><b>9. CO<sub>2</sub>-Selective Membranes for Hydrogen Fuel Processing 385<br /></b><i>Jin Huang, Jian Zou, and W.S. Winston Ho</i></p> <p>9.1 Introduction 385</p> <p>9.2 Synthesis of Novel CO<sub>2</sub>-Selective Membranes 388</p> <p>9.3 Model Description 389</p> <p>9.4 Results and Discussion 391</p> <p>9.4.1 Transport Properties of CO<sub>2</sub>-Selective Membrane 391</p> <p>9.4.2 Modeling Predictions 400</p> <p>9.5 Conclusions 408</p> <p>Glossary 410</p> <p>Acknowledgments 410</p> <p>References 411</p> <p><b>10. Pressure Swing Adsorption Technology for Hydrogen Production 414<br /></b><i>Shivaji Sircar and Timothy C. Golden</i></p> <p>10.1 Introduction 414</p> <p>10.2 PSA Processes for Hydrogen Purification 418</p> <p>10.2.1 PSA Processes for Production of Hydrogen Only 418</p> <p>10.2.2 Process for Coproduction of Hydrogen and Carbon Dioxide 422</p> <p>10.2.3 Processes for the Production of Ammonia Synthesis Gas 425</p> <p>10.3 Adsorbents for Hydrogen PSA Processes 426</p> <p>10.3.1 Adsorbents for Bulk CO<sub>2</sub> Removal 427</p> <p>10.3.2 Adsorbents for Dilute CO and N<sub>2</sub> Removal 429</p> <p>10.3.3 Adsorbents for Dilute CH4 Removal 432</p> <p>10.3.4 Adsorbents for C<sub>1</sub>–C<sub>4</sub> Hydrocarbon Removal 432</p> <p>10.3.5 Other Adsorbent and Related Improvements in the H<sub>2</sub> PSA 434</p> <p>10.4 Future Trends for Hydrogen PSA 435</p> <p>10.4.1 RPSA Cycles for Hydrogen Purification 436</p> <p>10.4.2 Structured Adsorbents 438</p> <p>10.4.3 Sorption-Enhanced Reaction Process (SERP) for H<sub>2</sub> Production 439</p> <p>10.5 PSA Process Reliability 441</p> <p>10.6 Improved Hydrogen Recovery by PSA Processes 441</p> <p>10.6.1 Integration with Additional PSA System 441</p> <p>10.6.2 Hybrid PSA-Adsorbent Membrane System 442</p> <p>10.7 Engineering Process Design 444</p> <p>10.8 Summary 447</p> <p>References 447</p> <p><b>11. Integration of H2/Syngas Production Technologies with Future Energy Systems 451<br /></b><i>Wei Wei, Parag Kulkarni, and Ke Liu</i></p> <p>11.1 Overview of Future Energy Systems and Challenges 451</p> <p>11.2 Application of Reforming-Based Syngas Technology 454</p> <p>11.2.1 NGCC Plants 454</p> <p>11.2.2 Integration of H<sub>2</sub>/Syngas Production Technologies in NGCC Plants 455</p> <p>11.3 Application of Gasification-Based Syngas Technology 465</p> <p>11.3.1 IGCC Plant 468</p> <p>11.4 Application of H<sub>2</sub>/Syngas Generation Technology to Liquid Fuels 477</p> <p>11.4.1 Coal-to-H<sub>2</sub> Process Description 479</p> <p>11.4.2 Coal-to-Hydrogen System Performance and Economics 481</p> <p>11.5 Summary 483</p> <p>References 483</p> <p><b>12. Coal and Syngas to Liquids 486<br /></b><i>Ke Liu, Zhe Cui, Wei Chen, and Lingzhi Zhang</i></p> <p>12.1 Overview and History of Coal to Liquids (CTL) 486</p> <p>12.2 Direct Coal Liquefaction (DCTL) 488</p> <p>12.2.1 DCTL Process 488</p> <p>12.2.2 The Kohleoel Process 490</p> <p>12.2.3 NEDOL (NEDO Liquefaction) Process 491</p> <p>12.2.4 The HTI-Coal Process 494</p> <p>12.2.5 Other Single-Stage Processes 495</p> <p>12.3 Indirect Coal to Liquid (ICTL) 496</p> <p>12.3.1 Introduction 496</p> <p>12.3.2 FT Synthesis 498</p> <p>12.4 Mobil Methanol to Gasoline (MTG) 510</p> <p>12.5 SMDS 511</p> <p>12.6 Hybrid Coal Liquefaction 512</p> <p>12.7 Coal to Methanol 513</p> <p>12.7.1 Introduction of Methanol Synthesis 513</p> <p>12.7.2 Methanol Synthesis Catalysts 514</p> <p>12.7.3 Methanol Synthesis Reactor Systems 514</p> <p>12.7.4 Liquid-Phase Methanol (LPMEOH<sup>™</sup>) Process 516</p> <p>12.8 Coal to Dimethyl Ether (DME) 519</p> <p>References 520</p> <p>Index 522</p>
<p>KE LIU, PhD, MBA, is the Principal Scientist and Project Leader of the Energy and Propulsion Technologies Division of GE Global Research Center, working on different technologies related to gasification, IGCC, syngas, and fuel conversion. Currently, he leads a team of engineers to develop the dry feeding technology for next-generation GE gasifier for high-moisture, low-rank coal and biomass gasification. Dr. Liu started his career at Exxon-Mobil and then UTC Fuel Cells, working on various fuel and H2 production technologies. He is not only a leading expert on energy, fuels, and gasification, but also an industrial leader who led many large R&D projects funded by DOE and large U.S. energy corporations such as GE, Shell-UTC, and Exxon-Mobil. A recipient of numerous awards, including the 2006 National Emerald Honors Special Recognition Award, Dr. Liu has served as a board member and program chair of International Pittsburgh Coal Conference, a board member of the Energy Center of CalTech (PEER), and the associate editor of the Energy and Fuels Journal.</p> <p>CHUNSHAN SONG, PhD, is a Professor of Fuel Science and Chemical Engineering and the Director of the EMS Energy Institute at Pennsylvania State University. A recipient of numerous awards, he has been extensively published, and his research on clean fuels and catalysis has been funded by government and industry. Also, Dr. Song has served as chair for the ACS Division of Petroleum Chemistry; chair for ACS Fuel Chemistry Division; and advisory board chair and program chair for International Pittsburgh Coal Conference.</p> <p>VELU SUBRAMANI, PhD, is a Research Scientist working for the BP Refining and Logistics Technology team. He has over fifteen years of research experience in heterogeneous catalysis for fine chemicals synthesis, energy production, and environmental protection. He is the recipient of research fellowships from Switzerland and the Science and Technology Agency (STA) of Japan. Dr. Subramani is the author of over fifty peer-reviewed articles in international journals and the author or co-author of several patents. He served as the program chair for the ACS Division of Fuel Chemistry.</p>
<p>Covers cutting-edge technology in the production and purification of syngas and hydrogen</p> <p>The world's insatiable appetite for energy has highlighted the demand for a continued supply of inexpensive clean energy that is not only sustainable, but also quells concerns about greenhouse-gas emissions. Hydrogen, an energy carrier, and syngas, a building block in alternative fuels, are two such components. In this comprehensive resource, the authors discuss the state-of-the-art technologies for the production and purification of syngas and hydrogen, including:</p> <ul> <li> <p>Gasification</p> </li> <li> <p>Reforming and catalytic partial oxidation</p> </li> <li> <p>Water-gas shift</p> </li> <li> <p>Desulfurization</p> </li> <li> <p>Membrane purification</p> </li> </ul> <p>The authors describe how to produce syngas and hydrogen from a wide range of feedstocks, along with the chemistry, catalysis, kinetics, and thermodynamics of the reactions involved and engineering of the processes.</p> <p>This book serves as an essential resource to both academic and industrial readers involved in R&D in chemical, oil, and energy industries. All readers of this reference book will acquire the fundamental aspects of the new directions in the energy industry with syngas and hydrogen-based fuels.</p>

Diese Produkte könnten Sie auch interessieren:

Chemistry for the Protection of the Environment 4
Chemistry for the Protection of the Environment 4
von: Robert Mournighan, Marzenna R. Dudzinska, John Barich, Marjorie A. Gonzalez, Robin K. Black
PDF ebook
213,99 €
Wörterbuch Labor / Laboratory Dictionary
Wörterbuch Labor / Laboratory Dictionary
von: Klaus Roth, Theodor C.H. Cole
PDF ebook
36,99 €