Details

Industrial Carbon and Graphite Materials


Industrial Carbon and Graphite Materials

Raw Materials, Production and Applications
1. Aufl.

von: Hubert Jäger, Wilhelm Frohs

331,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 05.03.2021
ISBN/EAN: 9783527674039
Sprache: englisch
Anzahl Seiten: 1008

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

An excellent overview of industrial carbon and graphite materials, especially their manufacture, use and applications in industry.<br /> Following a short introduction, the main part of this reference deals with industrial forms, their raw materials, properties and manifold applications. Featuring chapters on carbon and graphite materials in energy application, and as catalysts. It covers all important classes of carbon and graphite, from polygranular materials to fullerenes, and from activated carbon to carbon blacks and nanoforms of carbon.<br />Indispensable for chemists and engineers working in such fields as steel, aluminum, electrochemistry, nanotechnology, catalyst, carbon fibres and lightweight composites.
<p><b>Volume 1</b></p> <p>Preface xxiii</p> <p><b>1 Introduction: The Future of Carbon Materials – The Industrial Perspective 1<br /></b><i>Hubert Jäger, Wilhelm Frohs, and Tilo Hauke</i></p> <p>1.1 Overview 1</p> <p>1.2 Traditional Carbon and Graphite Materials 2</p> <p>1.3 Modern Application of Carbon Materials 12</p> <p>1.4 Future Application of Carbon Materials 18</p> <p>1.5 Conclusion 20</p> <p><b>2 The Element Carbon 21<br /></b><i>Wilhelm Frohs and Hubert Jäger</i></p> <p>2.1 Introduction 21</p> <p>2.2 Diamond 28</p> <p>2.3 Graphite 28</p> <p>2.4 Non-graphitic Carbon 29</p> <p>2.5 Carbyne and Chaoite 29</p> <p>2.6 Nanoforms of Carbon 30</p> <p>References 30<br /><br />Further Reading 31</p> <p><b>3 History of Carbon Materials 33<br /></b><i>Gerd Collin</i></p> <p>3.1 Origin of Elemental Carbon 33</p> <p>3.2 Formation and Economic Development of Natural Diamonds 34</p> <p>3.3 Formation and Use of Natural Graphite 34</p> <p>3.4 History of Charcoal from Wood and Coke from Coal 35</p> <p>3.5 History of Carbon Black 35</p> <p>3.6 History of Activated Carbon 38</p> <p>3.7 Development of Synthetic Graphite 38</p> <p>3.8 Development of Synthetic Diamonds 39</p> <p>3.9 Development of Carbon Fibers 39</p> <p>3.10 Discovery and Inventions of Nanocarbons: Fullerenes, Nanotubes, and Graphene 40</p> <p>References 42</p> <p><b>4 Recommended Terminology for the Description of Carbon as a Solid (© 1995 IUPAC) 45<br /></b><i>E. Fitzer, K.-H. Köchling, H.P. Böhm, and H. Marsh</i></p> <p>List of Terms 45</p> <p>Description of the Terms 48</p> <p>Acetylene Black 48</p> <p>Description 48</p> <p>Notes 48</p> <p>Acheson Graphite 48</p> <p>Description 48</p> <p>Notes 48</p> <p>Activated Carbon 49</p> <p>Description 49</p> <p>Notes 49</p> <p>Activated Charcoal 49</p> <p>Description 49</p> <p>Agranular Carbon 49</p> <p>Description 49</p> <p>Notes 49</p> <p>Amorphous Carbon 49</p> <p>Description 49</p> <p>Notes 50</p> <p>Artificial Graphite 50</p> <p>Description 50</p> <p>Notes 50</p> <p>Baking 50</p> <p>Description 50</p> <p>Binder 50</p> <p>Description 50</p> <p>Binder Coke 51</p> <p>Description 51</p> <p>Notes 51</p> <p>Brooks and Taylor Structure in the Carbonaceous Mesophase 51</p> <p>Description 51</p> <p>Notes 51</p> <p>Bulk Mesophase 51</p> <p>Description 51</p> <p>Notes 52</p> <p>Calcined Coke 52</p> <p>Description 52</p> <p>Notes 52</p> <p>Carbon 52</p> <p>Description 52</p> <p>Notes 52</p> <p>Carbon Artifact 52</p> <p>Description 52</p> <p>Notes 52</p> <p>Carbon Black 53</p> <p>Description 53</p> <p>Notes 53</p> <p>Carbon–Carbon Composite 53</p> <p>Description 53</p> <p>Carbon Cenospheres 53</p> <p>Description 53</p> <p>Carbon Cloth 53</p> <p>Description 53</p> <p>Notes 54</p> <p>Carbon Electrode 54</p> <p>Description 54</p> <p>Notes 54</p> <p>Carbon Felt 54</p> <p>Description 54</p> <p>Notes 54</p> <p>Carbon Fiber 54</p> <p>Description 54</p> <p>Notes 55</p> <p>Carbon Fiber Fabrics 55</p> <p>Description 55</p> <p>Carbon Fibers Type HM 55</p> <p>Description 55</p> <p>Notes 55</p> <p>Carbon Fibers Type HT 55</p> <p>Description 55</p> <p>Notes 56</p> <p>Carbon Fibers Type IM 56</p> <p>Description 56</p> <p>Notes 56</p> <p>Carbon Fibers Type LM (Low Modulus) 56</p> <p>Description 56</p> <p>Notes 56</p> <p>Carbon Fibers Type UHM 57</p> <p>Description 57</p> <p>Carbon Material 57</p> <p>Description 57</p> <p>Notes 57</p> <p>Carbon Mix 57</p> <p>Description 57</p> <p>Carbon Whiskers 57</p> <p>Description 57</p> <p>Carbonaceous Mesophase 57</p> <p>Description 57</p> <p>Notes 58</p> <p>Carbonization 58</p> <p>Description 58</p> <p>Notes 58</p> <p>Catalytic Graphitization 58</p> <p>Description 58</p> <p>Notes 58</p> <p>Char 59</p> <p>Description 59</p> <p>Notes 59</p> <p>Charcoal 59</p> <p>Description 59</p> <p>Notes 59</p> <p>Coal-Derived Pitch Coke 59</p> <p>Description 59</p> <p>Notes 59</p> <p>Coal-Tar Pitch 60</p> <p>Description 60</p> <p>Notes 60</p> <p>Coalification 60</p> <p>Description 60</p> <p>Notes 60</p> <p>Coke 60</p> <p>Description 60</p> <p>Notes 60</p> <p>Coke Breeze 61</p> <p>Description 61</p> <p>Colloidal Carbon 61</p> <p>Description 61</p> <p>Notes 61</p> <p>Delayed Coke 61</p> <p>Description 61</p> <p>Notes 61</p> <p>Delayed Coking Process 61</p> <p>Description 61</p> <p>Notes 62</p> <p>Diamond 62</p> <p>Description 62</p> <p>Notes 62</p> <p>Diamond by CVD 62</p> <p>Description 62</p> <p>Notes 62</p> <p>Diamond-Like Carbon Films 63</p> <p>Description 63</p> <p>Notes 63</p> <p>Electrographite 63</p> <p>Description 63</p> <p>Exfoliated Graphite 63</p> <p>Description 63</p> <p>Notes 64</p> <p>Fibrous Activated Carbon 64</p> <p>Description 64</p> <p>Notes 64</p> <p>Fibrous Carbon 64</p> <p>Description 64</p> <p>Filamentous Carbon 64</p> <p>Description 64</p> <p>Notes 64</p> <p>Filler 65</p> <p>Description 65</p> <p>Filler Coke 65</p> <p>Description 65</p> <p>Notes 65</p> <p>Fluid Coke 65</p> <p>Description 65</p> <p>Notes 65</p> <p>Fullerenes 66</p> <p>Description 66</p> <p>Notes 66</p> <p>Furnace Black 66</p> <p>Description 66</p> <p>Notes 66</p> <p>Gas-Phase-Grown Carbon Fibers 66</p> <p>Description 66</p> <p>Notes 66</p> <p>Glass-Like Carbon 67</p> <p>Description 67</p> <p>Notes 67</p> <p>Granular Carbon 67</p> <p>Description 67</p> <p>Notes 67</p> <p>Graphene Layer 67</p> <p>Description 67</p> <p>Notes 68</p> <p>Graphite 68</p> <p>Description 68</p> <p>Notes 68</p> <p>Graphite Electrode 68</p> <p>Description 68</p> <p>Graphite Fibers 68</p> <p>Description 68</p> <p>Notes 69</p> <p>Graphite Material 69</p> <p>Description 69</p> <p>Notes 69</p> <p>Graphite Whiskers 69</p> <p>Description 69</p> <p>Notes 69</p> <p>GRAPHITIC CARBON 70</p> <p>Description 70</p> <p>Notes 70</p> <p>Graphitizable Carbon 70</p> <p>Description 70</p> <p>Notes 70</p> <p>Graphitization 70</p> <p>Description 70</p> <p>Notes 70</p> <p>Graphitization Heat Treatment 71</p> <p>Description 71</p> <p>Notes 71</p> <p>Graphitized Carbon 71</p> <p>Description 71</p> <p>Notes 71</p> <p>Green Coke 71</p> <p>Description 71</p> <p>Notes 72</p> <p>Hard Amorphous Carbon Films 72</p> <p>Description 72</p> <p>Hexagonal Graphite 72</p> <p>Description 72</p> <p>Notes 72</p> <p>High-Pressure Graphitization 72</p> <p>Description 72</p> <p>Highly Oriented Pyrolytic Graphite 73</p> <p>Description 73</p> <p>Notes 73</p> <p>Isotropic Carbon 73</p> <p>Description 73</p> <p>Notes 73</p> <p>Isotropic Pitch-Based Carbon Fibers 73</p> <p>Description 73</p> <p>Notes 73</p> <p>Lamp Black 74</p> <p>Description 74</p> <p>Mesogenic Pitch 74</p> <p>Description 74</p> <p>Mesophase Pitch 74</p> <p>Description 74</p> <p>Notes 74</p> <p>Mesophase Pitch-Based Carbon Fibers 74</p> <p>Description 74</p> <p>Metallurgical Coke 75</p> <p>Description 75</p> <p>Notes 75</p> <p>Microporous Carbon 75</p> <p>Description 75</p> <p>Notes 75</p> <p>MPP-Based Carbon Fibers 75</p> <p>Description 75</p> <p>Natural Graphite 75</p> <p>Description 75</p> <p>Notes 76</p> <p>Needle Coke 76</p> <p>Description 76</p> <p>Notes 76</p> <p>Non-graphitic Carbon 76</p> <p>Description 76</p> <p>Notes 76</p> <p>Non-graphitizable Carbon 77</p> <p>Description 77</p> <p>Notes 77</p> <p>Nuclear Graphite 77</p> <p>Description 77</p> <p>Notes 77</p> <p>Pan-Based Carbon Fibers 77</p> <p>Description 77</p> <p>Particulate Carbon 78</p> <p>Description 78</p> <p>Notes 78</p> <p>Petroleum Coke 78</p> <p>Description 78</p> <p>Notes 78</p> <p>Petroleum Pitch 78</p> <p>Description 78</p> <p>Notes 78</p> <p>Pitch 79</p> <p>Description 79</p> <p>Notes 79</p> <p>Pitch-Based Carbon Fibers 79</p> <p>Description 79</p> <p>Notes 79</p> <p>Polycrystalline Graphite 79</p> <p>Description 79</p> <p>Notes 80</p> <p>Polygranular Carbon 80</p> <p>Description 80</p> <p>Notes 80</p> <p>Polygranular Graphite 80</p> <p>Description 80</p> <p>Notes 80</p> <p>Premium Coke 81</p> <p>Description 81</p> <p>Notes 81</p> <p>Puffing 81</p> <p>Description 81</p> <p>Notes 81</p> <p>Puffing Inhibitor 81</p> <p>Description 81</p> <p>Notes 81</p> <p>Pyrolytic Carbon 82</p> <p>Description 82</p> <p>Notes 82</p> <p>Pyrolytic Graphite 82</p> <p>Description 82</p> <p>Notes 82</p> <p>Raw Coke 82</p> <p>Description 82</p> <p>Notes 83</p> <p>Rayon-Based Carbon Fibers 83</p> <p>Description 83</p> <p>Notes 83</p> <p>Regular Coke 83</p> <p>Description 83</p> <p>Notes 83</p> <p>Rhombohedral Graphite 84</p> <p>Description 84</p> <p>Notes 84</p> <p>Semicoke 84</p> <p>Description 84</p> <p>Notes 84</p> <p>Soot 84</p> <p>Description 84</p> <p>Notes 85</p> <p>Spherical Carbonaceous Mesophase 85</p> <p>Description 85</p> <p>Stabilization Treatment of Thermoplastic Precursor Fibers for Carbon Fibers 85</p> <p>Description 85</p> <p>Notes 85</p> <p>Stress Graphitization 85</p> <p>Description 85</p> <p>Notes 86</p> <p>Synthetic Graphite 86</p> <p>Description 86</p> <p>Notes 86</p> <p>Thermal Black 86</p> <p>Description 86</p> <p>References 86</p> <p><b>5 Graphite 89<br /></b><i>Otto Vohler, Ferdinand von Sturm, Erhard Wege, and Wilhelm Frohs</i></p> <p>5.1 Graphite Single Crystal 89</p> <p>5.2 Natural Graphite 94</p> <p>5.2.1 Occurrence and Properties 94</p> <p>5.3 Synthetic Graphite 95</p> <p>References 101</p> <p>Further Reading 103</p> <p><b>6 Industrial Carbons 105</b></p> <p>6.1 Introduction to Polygranular Carbon and Graphite Materials 106</p> <p>References 106</p> <p>6.1.1 Polygranular Carbon and Graphite Materials 107<br /><i>Hubert Jäger, Wilhelm Frohs, Ferdinand von Sturm, Otto Vohler, and Erhard Wege</i></p> <p>6.1.1.1 The Relevance of Raw Materials 107</p> <p>6.1.1.1.1 Petroleum Coke 109</p> <p>6.1.1.1.2 Coal-Tar Pitch Coke 113</p> <p>6.1.1.1.3 Anthracite 114</p> <p>6.1.1.1.4 Binder Materials 115</p> <p>6.1.1.1.4.1 Coal-Tar Pitch 115</p> <p>6.1.1.1.4.2 Petroleum Pitch 117</p> <p>6.1.1.1.4.3 Thermosetting Resins 119</p> <p>References 120</p> <p>Further Reading 121</p> <p>6.1.2 Petroleum Coke 122<br /><i>Heinrich Predel and Srini Srivatsan</i></p> <p>6.1.2.1 Introduction 122</p> <p>6.1.2.2 Physical and Chemical Properties 122</p> <p>6.1.2.2.1 Physical Properties 122</p> <p>6.1.2.2.2 Chemical Properties and Composition 124</p> <p>6.1.2.3 Production 125</p> <p>6.1.2.3.1 Production Processes 125</p> <p>6.1.2.3.1.1 Delayed Coking 125</p> <p>6.1.2.3.1.2 Fluid Coking 132</p> <p>6.1.2.3.1.3 Flexicoking 134</p> <p>6.1.2.3.2 Calcination 135</p> <p>6.1.2.3.2.1 Rotary Kiln Calciner 137</p> <p>6.1.2.3.2.2 Rotary Hearth Calciner 138</p> <p>6.1.2.3.2.3 Shaft Kiln Calciner 138</p> <p>6.1.2.4 Uses and Economic Aspects 138</p> <p>6.1.2.4.1 Green Petroleum Coke 140</p> <p>6.1.2.4.2 Calcined Petroleum Coke 141</p> <p>6.1.2.4.2.1 Anode-Grade Coke (Regular Calcinate) 141</p> <p>6.1.2.4.2.2 Needle Coke 141</p> <p>6.1.2.5 Quality Aspects 142</p> <p>6.1.2.5.1 Green Coke 142</p> <p>6.1.2.5.2 Regular Calcinate 143</p> <p>6.1.2.5.3 Needle Coke 144</p> <p>6.1.2.6 Environmental and Safety Aspects 145</p> <p>6.1.2.6.1 Green Coke 145</p> <p>6.1.2.6.2 Calcined Petroleum Coke 146</p> <p>References 147</p> <p>Further Reading 149</p> <p>6.1.3 Coal-Tar Pitch Coke 150<br /><i>Tetsusei Fukuda</i></p> <p>6.1.3.1 Introduction 150</p> <p>6.1.3.2 Physical and Chemical Properties 151</p> <p>6.1.3.2.1 Physical Properties 151</p> <p>6.1.3.2.2 Chemical Properties 151</p> <p>6.1.3.3 Production of Pitch Coke 152</p> <p>6.1.3.3.1 Production Process 152</p> <p>6.1.3.3.1.1 Chamber Coking Process 153</p> <p>6.1.3.3.1.2 Delayed Coker and Calciner 155</p> <p>6.1.3.4 Uses 161</p> <p>6.1.3.4.1 Aggregate of Graphite Electrode for Aluminum Smelting 161</p> <p>6.1.3.4.2 Aggregate for Graphite Electrode in Electric Arc Furnace Steelmaking 161</p> <p>6.1.3.5 Environmental and Safety Aspects 162</p> <p>References 164</p> <p>6.1.4 Natural Graphite 165<br /><i>Werner Handl</i></p> <p>6.1.4.1 Occurrence and Classification 165</p> <p>6.1.4.2 Mining and Cleaning 165</p> <p>6.1.4.3 Applications of Natural Graphite 169</p> <p>6.1.4.4 Economic Aspects 170</p> <p>References 171</p> <p>6.1.5 Tar and Pitch 172<br /><i>Gerd-Peter Blümer, Gerd Collin, and Hartmut Höke</i></p> <p>6.1.5.1 Origin, Classification, and Industrial Importance of Tars and Pitches 172</p> <p>6.1.5.1.1 Origin and Classification 172</p> <p>6.1.5.1.2 History 173</p> <p>6.1.5.1.3 Industrial Importance 174</p> <p>6.1.5.2 Properties 174</p> <p>6.1.5.3 Processing of Coke-Oven Coal Tar 184</p> <p>6.1.5.3.1 Survey 184</p> <p>6.1.5.3.2 Primary Distillation 185</p> <p>6.1.5.3.3 Processing of Coal-Tar Pitch 189</p> <p>6.1.5.3.3.1 Cooling 189</p> <p>6.1.5.3.3.2 Production of Electrode Pitch 190</p> <p>6.1.5.3.3.3 Production of Special Pitches 194</p> <p>6.1.5.3.4 Processing of Tar Distillates 196</p> <p>6.1.5.3.4.1 Carbon Black Oils 196</p> <p>6.1.5.3.4.2 Impregnating Oils 196</p> <p>6.1.5.3.4.3 Fuel oils 199</p> <p>6.1.5.3.4.4 Diesel Fuels 199</p> <p>6.1.5.3.4.5 Fluxing Oils 199</p> <p>6.1.5.4 Processing of Low-Temperature Coal Tars 199</p> <p>6.1.5.5 Processing of Other Tars and Tarlike Raw Materials 201</p> <p>6.1.5.5.1 Lignite Tars 201</p> <p>6.1.5.5.2 Peat Tars 201</p> <p>6.1.5.5.3 Wood Tars 202</p> <p>6.1.5.5.4 Oil-Shale Tars 202</p> <p>6.1.5.5.5 Pyrolysis Residual Oils 202</p> <p>6.1.5.6 Uses of Tar Products and Their Economic Importance 203</p> <p>6.1.5.7 Toxicology and Ecotoxicology 204</p> <p>6.1.5.7.1 Toxicology 204</p> <p>6.1.5.7.2 Ecotoxicology 206</p> <p>6.1.5.7.3 Classification and Legislation 206</p> <p>References 207</p> <p>6.1.6 Thermosetting Resins 211<br /><i>Josef Suren</i></p> <p>References 213</p> <p>6.2 Manufacturing 214<br /><i>Johann Daimer</i></p> <p>6.2.1 Grinding and Sizing 214</p> <p>6.2.2 Mixing 214</p> <p>6.2.3 Forming 215</p> <p>6.2.3.1 Molding 216</p> <p>6.2.3.2 Isostatic Molding 216</p> <p>6.2.3.3 Vibration Molding 217</p> <p>6.2.3.4 Other Forming Methods 217</p> <p>6.2.4 Baking 217</p> <p>6.2.4.1 Ring Furnace 219</p> <p>6.2.4.2 Car-Bottom Furnace/Single-Chamber Furnace 221</p> <p>6.2.4.3 Tunnel Kiln 221</p> <p>6.2.4.4 Other Furnaces 222</p> <p>6.2.5 Graphitization 222</p> <p>6.2.5.1 Acheson Furnace 224</p> <p>6.2.5.2 Castner Furnace 224</p> <p>6.2.5.3 Induction Furnace 225</p> <p>6.2.5.4 Radiation Heating 225</p> <p>6.2.6 Purification 225</p> <p>6.2.7 Machining 226</p> <p>6.2.8 Impregnation and Surface Coating 226</p> <p>References 227</p> <p>6.3 Environmental, Health and Safety Aspects of the Production of Carbon and Graphite 230<br /><i>Ruediger Meyer zu Reckendorf</i></p> <p>6.3.1 Environmental Aspects 230</p> <p>6.3.1.1 Raw Materials 230</p> <p>6.3.1.2 Processes and Energy 231</p> <p>6.3.2 Occupational Safety and Health Aspects 232</p> <p>6.3.2.1 Coal Tar Pitch 232</p> <p>6.3.2.2 Risk Strategy for Benzopyrene 232</p> <p>6.3.2.3 Gases 233</p> <p>6.3.2.4 Electric Current 234</p> <p>6.3.2.5 Dust 234</p> <p>6.3.3 Process Safety 234</p> <p>References 235</p> <p>6.4 Properties of Polygranular Carbon and Graphite Materials 237<br /><i>Marcus Franz, Franz Fendt, and Karl Wimmer</i></p> <p>6.4.1 Physical Properties 237</p> <p>6.4.2 Chemical Properties 241</p> <p>References 242</p> <p>Further Reading 242</p> <p>6.5 Applications 243</p> <p>6.5.1 Prebaked Anodes for Aluminum Electrolysis 244<br /><i>Jean-Claude Fischer and Raymond Cecil Perruchoud</i></p> <p>6.5.1.1 Introduction 244</p> <p>6.5.1.2 The Electrolysis Cell 244</p> <p>6.5.1.3 The Role of Anodes in the Pots 245</p> <p>6.5.1.3.1 Current Conductor Aspects 245</p> <p>6.5.1.3.2 Thermal Aspects 248</p> <p>6.5.1.3.3 Anode Failure and Consumption Mechanisms 249</p> <p>6.5.1.3.4 Carbon Consumption Figures 252</p> <p>6.5.1.4 The Cost of Al Production Related to the Anodes 252</p> <p>6.5.1.5 The Anode Manufacture for Large Modern Smelters 253</p> <p>6.5.1.6 The Raw Materials 254</p> <p>6.5.1.7 The Green Mill 255</p> <p>6.5.1.7.1 Dry Aggregate Preparation 255</p> <p>6.5.1.7.2 Paste and Green Block Production 260</p> <p>6.5.1.7.3 The Baking Furnace 264</p> <p>6.5.1.7.4 Anode Slotting 268</p> <p>6.5.1.7.5 Anode Rodding 269</p> <p>6.5.1.7.6 Anode Quality Control 271</p> <p>6.5.1.8 Outlook 271</p> <p>References 273</p> <p>6.5.2 Cathodes for Aluminum Electrolysis 275</p> <p><i>Frank Hiltmann</i></p> <p>6.5.2.1 Cathodes in the Aluminum Smelting Process 275</p> <p>6.5.2.2 Cathode Classification 275</p> <p>6.5.2.3 Cathode Lifetime 277</p> <p>6.5.2.4 Wettable Cathodes 278</p> <p>6.5.2.5 Surface-Profiled Cathodes 279</p> <p>6.5.2.6 Spent Potlining 280</p> <p>References 280</p> <p>Further Reading 280</p> <p>6.5.3 Graphite Electrodes for Electric Arc Furnaces 281<br /><i>Daniel Steppich</i></p> <p>6.5.3.1 Graphite Electrodes for Electric Arc Furnaces 281</p> <p>6.5.3.1.1 Steel Production 281</p> <p>6.5.3.1.1.1 The Era of Iron and Steel 282</p> <p>6.5.3.1.1.2 Steel Recycling in an Electric Arc Furnace 287</p> <p>6.5.3.1.1.3 Steel Market Outlook 296</p> <p>6.5.3.1.2 Graphite Electrodes in the Steel Recycling Process 298</p> <p>6.5.3.1.2.1 Application Requirements 299</p> <p>6.5.3.1.2.2 Wear Mechanisms 303</p> <p>6.5.3.1.2.3 Future Developments 308</p> <p>6.5.3.1.2.4 Graphite Electrode Market Outlook 312</p> <p>References 314</p> <p>6.5.4 Linings and Casting 320<br /><i>Otto Vohler, Ferdinand von Sturm, and Erhard Wege</i></p> <p>References 321</p> <p>Further Reading 321</p> <p>6.5.5 Carbon Electrodes 322<br /><i>Eckhard Escher</i></p> <p>6.5.5.1 Introduction 322</p> <p>6.5.5.1.1 Raw Materials 322</p> <p>6.5.5.1.2 Manufacturing 323</p> <p>6.5.5.1.3 Typical Properties 323</p> <p>6.5.5.1.4 Dimensions 324</p> <p>6.5.5.1.5 Joint Systems 324</p> <p>6.5.5.1.6 Carbon Electrode Market 325</p> <p>Reference 325</p> <p>6.5.6 Self-Baking Electrodes 326<br /><i>Johann-Christian Leye and Robert Becker</i></p> <p>6.5.6.1 Raw Materials 327</p> <p>6.5.6.2 Manufacturing 327</p> <p>6.5.6.3 Properties 328</p> <p>6.5.6.4 Operation Mode 328</p> <p>6.5.6.4.1 The Process of Self-Baking Electrodes 328</p> <p>References 329</p> <p>6.5.7 Graphite Process Equipment 331<br /><i>Marcus Franz</i></p> <p>6.5.7.1 Heat Exchangers 332</p> <p>6.5.7.2 Absorbers, Desorbers, and Distillation Columns 335</p> <p>6.5.7.3 Hydrochloric Acid and Gas Synthesis Units 335</p> <p>6.5.7.4 Reactors 336</p> <p>6.5.7.5 Pumps 336</p> <p>6.5.8 Fine-Grained Graphite 338<br /><i>Werner Richard Hoffmann</i></p> <p>6.5.8.1 Markets and Applications 338</p> <p>6.5.8.2 Applications in the Electronic Industry 338</p> <p>6.5.8.3 Applications in the Metallurgy 341</p> <p>6.5.8.4 Applications in the Ceramics 344</p> <p>6.5.8.5 Applications in the Glass and Quartz-Glass Production 345</p> <p>6.5.8.6 Applications for Current Transmission 345</p> <p>6.5.8.6.1 Carbon Brushes 345</p> <p>6.5.8.6.2 Current Collectors 346</p> <p>6.5.8.7 Applications in the Analytical Technology 347</p> <p>6.5.9 Synthetic Graphite in Nuclear Applications 349<br /><i>Rainer Schmitt</i></p> <p>6.5.9.1 Early Graphites in Nuclear Reactor Technology 349</p> <p>6.5.9.2 Requirements for Nuclear Graphite 350</p> <p>6.5.9.3 Radiation Damage in Nuclear Graphite 351</p> <p>6.5.9.3.1 Structure of Polycrystalline Graphite 351</p> <p>6.5.9.3.2 Basic Effects of Radiation on the Graphite Lattice Structure 353</p> <p>6.5.9.3.3 Graphite Property Changes Due to Fast Neutron Irradiation 355</p> <p>6.5.9.3.3.1 Dimensional Changes 355</p> <p>6.5.9.3.3.2 Thermal Expansion Coefficient (CTE) 355</p> <p>6.5.9.3.3.3 Thermal Conductivity and Resistivity 358</p> <p>6.5.9.3.3.4 Young’s Modulus 358</p> <p>6.5.9.3.3.5 Tensile Strength 359</p> <p>6.5.9.3.3.6 Irradiation-Induced Creep 359</p> <p>6.5.9.4 Decommissioning 361</p> <p>6.5.9.5 Outlook 362</p> <p>References 363</p> <p>6.5.10 Expanded Graphite and Graphite Foils 364<br /><i>Martin Christ</i></p> <p>6.5.10.1 Production 364</p> <p>6.5.10.2 Properties 365</p> <p>6.5.10.3 Applications 367</p> <p>6.5.10.3.1 Sealing Applications 367</p> <p>6.5.10.3.2 Conductive Fillers 368</p> <p>6.5.10.3.3 Latent Heat Storage 369</p> <p>6.5.10.3.4 Other Applications 370</p> <p>6.5.10.4 Economic Aspects 370</p> <p>References 370</p> <p>Further Reading 371</p> <p>6.5.11 Other Classes of Carbon 372<br /><i>Otto Vohler, Ferdinand von Sturm, and Erhard Wege</i></p> <p>6.5.11.1 Glass-Like Carbon 372</p> <p>6.5.11.2 Pyrocarbon and Pyrographite 373</p> <p>6.5.11.3 Graphite Compounds 374</p> <p>6.5.11.3.1 Surface Complexes 374</p> <p>6.5.11.3.2 Graphite Intercalation Compounds 375</p> <p>References 376</p> <p>Further Reading 377</p> <p><b>7 Carbon and Graphite for Electrochemical Power Sources 379<br /></b><i>Mario Wachtler, Oswin Öttinger, and Rüdiger Schweiss</i></p> <p>7.1 Introduction 379</p> <p>7.2 Primary Batteries 380</p> <p>7.3 Lead Acid Batteries 381</p> <p>7.4 Li-Ion Batteries 387</p> <p>7.4.1 Introduction 387</p> <p>7.4.2 Active Materials: General Concepts 390</p> <p>7.4.2.1 Types of Carbon and Graphite Materials 391</p> <p>7.4.2.2 Mechanism of Charge Storage in Graphitic Materials 392</p> <p>7.4.2.3 Graphitization Degree and Reversible Capacity 395</p> <p>7.4.2.4 The Solid Electrolyte Interphase 397</p> <p>7.4.2.5 Solvent Co-intercalation and Graphite Exfoliation 398</p> <p>7.4.2.6 Further Material Design Aspects 401</p> <p>7.4.2.7 Mechanism of Charge Storage in Amorphous Carbons 403</p> <p>7.4.3 Commercialized Active Materials 404</p> <p>7.4.3.1 Amorphous Carbons (Hard and Soft Carbons) 406</p> <p>7.4.3.2 Graphitized Mesophase Carbon Materials 409</p> <p>7.4.3.3 Natural Graphite 409</p> <p>7.4.3.4 Synthetic Graphite 411</p> <p>7.4.3.5 Carbon/Graphite-Silicon and Composites 412</p> <p>7.4.3.6 Other Anode Materials 413</p> <p>7.4.4 Conductive Additives 415</p> <p>7.4.5 Carbon Coatings 417</p> <p>7.5 “Beyond Li-Ion” Battery Chemistries 418</p> <p>7.5.1 Na-Ion Battery 418</p> <p>7.5.2 Li-Sulfur Battery 419</p> <p>7.5.3 Li-Oxygen/Air Battery 420</p> <p>7.6 Electrochemical Double-Layer Capacitors 420</p> <p>7.6.1 Introduction 420</p> <p>7.6.2 Effect of Porosity on Capacitance 423</p> <p>7.6.3 Carbon-Based Electrode Materials 425</p> <p>7.6.3.1 Activated Carbons 426</p> <p>7.6.3.2 Other Carbon Materials 427</p> <p>7.7 Redox Flow Batteries 427</p> <p>7.7.1 Introduction 427</p> <p>7.7.2 Bipolar Plates 428</p> <p>7.7.3 Electrode Materials 431</p> <p>7.7.3.1 Carbon Felts 431</p> <p>7.7.3.2 Reticulated Vitreous Carbon 433</p> <p>7.7.3.3 Other Electrode Concepts 434</p> <p>7.7.3.4 Relevance of Carbon Materials 436</p> <p>7.8 Fuel Cells 438</p> <p>7.8.1 Introduction 438</p> <p>7.8.2 Bipolar Plates 439</p> <p>7.8.2.1 Manufacturing 440</p> <p>7.8.2.2 Properties 440</p> <p>7.8.3 Gas Diffusion Layers and Electrodes 440</p> <p>7.8.3.1 Gas Diffusion Layer Substrates 442</p> <p>7.8.3.2 Microporous Layers 444</p> <p>7.8.3.3 Gas Diffusion Electrodes and Catalyst Layers 446</p> <p>References 448</p> <p>Further Reading 455</p> <p><b>Volume 2</b></p> <p>Preface xv</p> <p>8 Carbon and Graphite for Catalysis 457<br /><i>Dang Sheng Su, Wei Qi, and Guodong Wen</i></p> <p>9 Activated Carbon 491<br /><i>Klaus-Dirk Henning and Hartmut von Kienle</i></p> <p>10 Carbon Black 533<br /><i>Conny Oswald Vogler and Manfred Voll</i></p> <p>11 Carbon Fibers 603<br /><i>Michael Heine</i></p> <p>12 Carbon Fiber Composites 697</p> <p>12.1 Carbon Fiber Reinforced Polymers 698<br /><i>Klaus Drechsler, Michael Heine, and Peter Mitschang</i></p> <p>12.2 Carbon Fiber Reinforced Carbon 740<br /><i>Udo Gruber, Oswin Öttinger, Walter Baur, and Ludger Fischer</i></p> <p>12.3 Carbon Fiber Reinforced Ceramic Composites 825<br /><i>Bernhard Heidenreich and Andreas Kienzle</i></p> <p>13 Nanocarbons 885<br /><i>Kazunori Fujisawa, Yoong Ahm Kim, Takuya Hayashi, Kenji Takeuchi, Hiroyuki Muramatsu, Shuji Tsuruoka, Takashi Yanagisawa, Mauricio Terrones, and Morinobu Endo</i></p> <p>Index 945</p>
Hubert Jager received his PhD from the Technical University of Karlsruhe. He started his industrial career in 1986 at SGL Carbon. Since then, he held various positions in R&D, production, technical service and others. Since 2014 he is Professor at the Institut fur Leichtbau und Kunststofftechnik (IKL) at the Technical University of Dresden. He is author of several papers in polymer chemistry, SiC-fiber composite technology and carbon fiber surface chemistry.<br> <br> Wilhelm Frohs received his PhD 1989 under the guidance of Prof. Fitzer. In the same year he joined SGL Carbon and has held various R&D positions. His current activities are focused on raw material development. He is author of many papers in the fields of carbon fibers, petroleum, and coal tar pitch coke, coal tar pitch, and graphite electrodes. Since 2010 he is president of the German Carbon Group (Arbeitskreis Kohlenstoff, AKK).

Diese Produkte könnten Sie auch interessieren:

Chemistry for the Protection of the Environment 4
Chemistry for the Protection of the Environment 4
von: Robert Mournighan, Marzenna R. Dudzinska, John Barich, Marjorie A. Gonzalez, Robin K. Black
PDF ebook
213,99 €
Wörterbuch Labor / Laboratory Dictionary
Wörterbuch Labor / Laboratory Dictionary
von: Klaus Roth, Theodor C.H. Cole
PDF ebook
36,99 €