Details

Lithium-Sulfur Batteries


Lithium-Sulfur Batteries


1. Aufl.

von: Mark Wild, Gregory J. Offer

136,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 14.01.2019
ISBN/EAN: 9781119297901
Sprache: englisch
Anzahl Seiten: 352

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>A guide to lithium sulfur batteries that explores their materials, electrochemical mechanisms and modelling and includes recent scientific developments</b></p> <p><i>Lithium Sulfur Batteries</i> (Li-S) offers a comprehensive examination of Li-S batteries from the viewpoint of the materials used in their construction, the underlying electrochemical mechanisms and how this translates into the characteristics of Li-S batteries. The authors – noted experts in the field – outline the approaches and techniques required to model Li-S batteries.</p> <p><i>Lithium Sulfur Batteries</i> reviews the application of Li-S batteries for commercial use and explores many broader issues including the development of battery management systems to control the unique characteristics of Li-S batteries. The authors include information onsulfur cathodes, electrolytes and other components used in making Li-S batteries and examine the role of lithium sulfide, the shuttle mechanism and its effects, and degradation mechanisms. The book contains a review of battery design and:</p> <ul> <li>Discusses electrochemistry of Li-S batteries and the analytical techniques used to study Li-S batteries</li> <li>Offers information on the application of Li-S batteries for commercial use</li> <li>Distills years of research on Li-S batteries into one comprehensive volume</li> <li>Includes contributions from many leading scientists in the field of Li-S batteries</li> <li>Explores the potential of Li-S batteries to power larger battery applications such as automobiles, aviation and space vehicles</li> </ul> <p>Written for academic researchers, industrial scientists and engineers with an interest in the research, development, manufacture and application of next generation battery technologies, <i>Lithium Sulfur Batteries </i>is an essential resource for accessing information on the construction and application of Li-S batteries. </p>
<p>Preface xiii</p> <p><b>Part I Materials 1</b></p> <p><b>1 Electrochemical Theory and Physics 3<br /></b><i>Geraint Minton</i></p> <p>1.1 Overview of a LiS cell 3</p> <p>1.2 The Development of the Cell Voltage 5</p> <p>1.2.1 Using the Electrochemical Potential 7</p> <p>1.2.2 Electrochemical Reactions 10</p> <p>1.2.3 The Electric Double Layer 13</p> <p>1.2.4 Reaction Equilibrium 15</p> <p>1.2.5 A Finite Electrolyte 17</p> <p>1.2.6 The Need for a Second Electrode 17</p> <p>1.3 Allowing a Current to Flow 19</p> <p>1.3.1 The Reaction Overpotential 20</p> <p>1.3.2 The Transport Overpotential 21</p> <p>1.3.3 General Comments on the Overpotentials 22</p> <p>1.4 Additional Processes Which Define the Behavior of a LiS Cell 22</p> <p>1.4.1 Multiple Electrochemical Reactions at One Surface 22</p> <p>1.4.2 Chemical Reactions 23</p> <p>1.4.3 Species Solubility and Indirect Reaction Effects 25</p> <p>1.4.4 Transport Limitations in the Cathode 25</p> <p>1.4.5 The Active Surface Area 26</p> <p>1.4.6 Precipitate Accumulation 27</p> <p>1.4.7 Electrolyte Viscosity, Conductivity, and Species Transport 27</p> <p>1.4.8 Side Reactions and SEI Formation at the Anode 28</p> <p>1.4.9 Anode Morphological Changes 29</p> <p>1.4.10 Polysulfide Shuttle 29</p> <p>1.5 Summary 30</p> <p>References 30</p> <p><b>2 Sulfur Cathodes 33<br /></b><i>Holger Althues, Susanne Dörfler, Sören Thieme, Patrick Strubel and Stefan Kaskel</i></p> <p>2.1 Cathode Design Criteria 33</p> <p>2.1.1 Overview of Cathode Components and Composition 33</p> <p>2.1.2 Cathode Design: Role of Electrolyte in Sulfur Cathode Chemistry 34</p> <p>2.1.3 Cathode Design: Impact on Energy Density on Cell Level 35</p> <p>2.1.4 Cathode Design: Impact on Cycle Life and Self-discharge 36</p> <p>2.1.5 Cathode Design: Impact on Rate Capability 37</p> <p>2.2 Cathode Materials 37</p> <p>2.2.1 Properties of Sulfur 37</p> <p>2.2.2 Porous and Nanostructured Carbons as Conductive Cathode Scaffolds 39</p> <p>2.2.2.1 Graphite-Like Carbons 39</p> <p>2.2.2.2 Synthesis of Graphite-like Carbons 39</p> <p>2.2.2.3 Carbon Black 40</p> <p>2.2.2.4 Activated Carbons 41</p> <p>2.2.2.5 Carbide-Derived Carbon 42</p> <p>2.2.2.6 Hard-Template-Assisted Carbon Synthesis 42</p> <p>2.2.2.7 Carbon Surface Chemistry 43</p> <p>2.2.3 Carbon/Sulfur Composite Cathodes 43</p> <p>2.2.3.1 Microporous Carbons 44</p> <p>2.2.3.2 Mesoporous Carbons 45</p> <p>2.2.3.3 Macroporous Carbons and Nanotube–based Cathode Systems 46</p> <p>2.2.3.4 Hierarchical Mesoporous Carbons 47</p> <p>2.2.3.5 Hierarchical Microporous Carbons 49</p> <p>2.2.3.6 Hollow Carbon Spheres 50</p> <p>2.2.3.7 Graphene 51</p> <p>2.2.4 Retention of LiPS by Surface Modifications and Coating 51</p> <p>2.2.4.1 Metal Oxides as Adsorbents for Lithium Polysulfides 56</p> <p>2.3 Cathode Processing 57</p> <p>2.3.1 Methods for C/S Composite Preparation 57</p> <p>2.3.2 Wet (Organic, Aqueous) and Dry Coating for Cathode Production 58</p> <p>2.3.3 Alternative Cathode Support Concepts (Carbon Current Collectors, Binder-free Electrodes) 59</p> <p>2.3.4 Processing Perspective for Carbons, Binders, and Additives 59</p> <p>2.4 Conclusions 59</p> <p>References 61</p> <p><b>3 Electrolyte for Lithium–Sulfur Batteries 71<br /></b><i>Marzieh Barghamadi, Mustafa Musameh, Thomas Rüther, Anand I. Bhatt, Anthony F. Hollenkamp and</i> <i>Adam S. Best</i></p> <p>3.1 The Case for Better Batteries 71</p> <p>3.2 Li–S Battery: Origins and Principles 72</p> <p>3.3 Solubility of Species and Electrochemistry 74</p> <p>3.4 Liquid Electrolyte Solutions 75</p> <p>3.5 Modified Liquid Electrolyte Solutions 91</p> <p>3.5.1 Variation in Electrolyte Salt Concentration 91</p> <p>3.5.2 Mixed Organic–Ionic Liquid Electrolyte Solutions 91</p> <p>3.5.3 Ionic Liquid Electrolyte Solutions 93</p> <p>3.6 Solid and Solidified Electrolyte Configurations 96</p> <p>3.6.1 Polymer Electrolytes 96</p> <p>3.6.1.1 Absorbed Liquid/Gelled Electrolyte 96</p> <p>3.6.1.2 Solid Polymer Electrolytes 98</p> <p>3.6.2 Non-polymer Solid Electrolytes 100</p> <p>3.7 Challenges of the Cathode and Solvent for Device Engineering 102</p> <p>3.7.1 The Cathode Loading Challenge 102</p> <p>3.7.2 Cathode Wetting Challenge 104</p> <p>3.8 Concluding Remarks and Outlook 108</p> <p>References 111</p> <p><b>4 Anode–Electrolyte Interface 121<br /></b><i>Mark Wild</i></p> <p>4.1 Introduction 121</p> <p>4.2 SEI Formation 121</p> <p>4.3 Anode Morphology 122</p> <p>4.4 Polysulfide Shuttle 123</p> <p>4.5 Electrolyte Additives for Stable SEI Formation 123</p> <p>4.6 Barrier Layers on the Anode 125</p> <p>4.7 A Systemic Approach 126</p> <p>References 126</p> <p><b>Part II Mechanisms 129</b></p> <p>Reference 131</p> <p><b>5 Molecular Level Understanding of the Interactions Between Reaction Intermediates of Li–S Energy</b> <b>Storage Systems and Ether Solvents 133<br /></b><i>Rajeev S. Assary and Larry A. Curtiss</i></p> <p>5.1 Introduction 133</p> <p>5.2 Computational Details 135</p> <p>5.3 Results and Discussions 135</p> <p>5.3.1 Reactivity of Li–S Intermediates with Dimethoxy Ethane (DME) 136</p> <p>5.3.2 Kinetic Stability of Ethers in the Presence of Lithium Polysulfide 138</p> <p>5.3.3 Linear Fluorinated Ethers 140</p> <p>5.4 Summary and Conclusions 144</p> <p>Acknowledgments 144</p> <p>References 144</p> <p><b>6 Lithium Sulfide 147<br /></b><i>Sylwia Walu´s</i></p> <p>6.1 Introduction 147</p> <p>6.2 Li2S as the End Discharge Product 148</p> <p>6.2.1 General 148</p> <p>6.2.2 Discharge Product: Li2S or Li2S2/Li2S? 151</p> <p>6.2.3 A Survey of Experimental andTheoretical Findings Involving Li2S and Li2S2 Formation and Proposed Reduction Pathways 153</p> <p>6.2.4 Mechanistic Insight into Li2S/Li2S2 Nucleation and Growth 157</p> <p>6.2.5 Strategies to Limit Li2S Precipitation and Enhance the Capacity 160</p> <p>6.2.6 Charge Mechanism and its Difficulties 161</p> <p>6.3 Li2S-Based Cathodes: Toward a Li Ion System 164</p> <p>6.3.1 General 164</p> <p>6.3.2 Initial Activation of Li2S – Mechanism of First Charge 165</p> <p>6.3.3 Recent Developments in Li2S Cathodes for Improved Performances 171</p> <p>6.4 Summary 176</p> <p>References 176</p> <p><b>7 Degradation in Lithium–Sulfur Batteries 185<br /></b><i>Rajlakshmi Purkayastha</i></p> <p>7.1 Introduction 185</p> <p>7.2 Degradation Processes Within a Lithium–Sulfur Cell 190</p> <p>7.2.1 Degradation at Cathode 190</p> <p>7.2.2 Degradation at Anode 194</p> <p>7.2.3 Degradation in Electrolyte 197</p> <p>7.2.4 Degradation Due to Operating Conditions: Temperature, C-Rates, and Pressure 200</p> <p>7.2.5 Degradation Due to Geometry: Scale-Up and Topology 205</p> <p>7.3 Capacity Fade Models 209</p> <p>7.3.1 Dendrite Models 211</p> <p>7.3.2 Equivalent Circuit Network Models 213</p> <p>7.4 Methods of Detecting and Measuring Degradation 214</p> <p>7.4.1 Incremental Capacity Analysis 215</p> <p>7.4.2 Differential Thermal Voltammetry 215</p> <p>7.4.3 Electrochemical Impedance Spectroscopy 215</p> <p>7.4.4 Resistance Curves 216</p> <p>7.4.5 Macroscopic Indicators 217</p> <p>7.5 Methods for Countering Degradation 218</p> <p>7.6 Future Direction 221</p> <p>References 222</p> <p><b>Part III Modeling 227</b></p> <p><b>8 Lithium–Sulfur Model Development 229<br /></b><i>Teng Zhang, Monica Marinescu and Gregory J. Offer</i></p> <p>8.1 Introduction 229</p> <p>8.2 Zero-Dimensional Model 231</p> <p>8.2.1 Model Formulation 231</p> <p>8.2.1.1 Electrochemical Reactions 231</p> <p>8.2.1.2 Shuttle and Precipitation 232</p> <p>8.2.1.3 Time Evolution of Species 233</p> <p>8.2.1.4 Model Implementation 233</p> <p>8.2.2 Basic Charge/Discharge Behaviors 233</p> <p>8.3 Modeling Voltage Loss in Li–S Cells 236</p> <p>8.3.1 Electrolyte Resistance 237</p> <p>8.3.2 Anode Potential 238</p> <p>8.3.3 Surface Passivation 239</p> <p>8.3.4 Transport Limitation 240</p> <p>8.4 Higher Dimensional Models 242</p> <p>8.4.1 One-Dimensional Models 242</p> <p>8.4.2 Multi-Scale Models 244</p> <p>8.5 Summary 245</p> <p>References 246</p> <p><b>9 Battery Management Systems – State Estimation for Lithium–Sulfur Batteries 249<br /></b><i>Daniel J. Auger, Abbas Fotouhi, Karsten Propp and Stefano Longo</i></p> <p>9.1 Motivation 249</p> <p>9.1.1 Capacity 249</p> <p>9.1.2 State of Charge (SoC) 251</p> <p>9.1.3 State of Health (SoH) 251</p> <p>9.1.4 Limitations of Existing Battery State Estimation Techniques 252</p> <p>9.1.4.1 SoC Estimation from “Coulomb Counting” 252</p> <p>9.1.4.2 SoC Estimation from Open-Circuit Voltage (OCV) 253</p> <p>9.1.5 Direction of Current Work 253</p> <p>9.2 Experimental Environment for Li–S Algorithm Development 254</p> <p>9.2.1 Pulse Discharge Tests 255</p> <p>9.2.2 Driving Cycle Tests 255</p> <p>9.3 State Estimation Techniques from Control Theory 256</p> <p>9.3.1 Electrochemical Models 257</p> <p>9.3.2 Equivalent Circuit Network (ECN) Models 258</p> <p>9.3.3 Kalman Filters and Their Derivatives 259</p> <p>9.4 State Estimation Techniques from Computer Science 261</p> <p>9.4.1 ANFIS as a Modeling Tool 261</p> <p>9.4.2 Human Knowledge and Fuzzy Inference Systems (FIS) 263</p> <p>9.4.3 Adaptive Neuro-Fuzzy Inference Systems 266</p> <p>9.4.4 State-of-Charge Estimation Using ANFIS 268</p> <p>9.5 Conclusions and Further Directions 269</p> <p>Acknowledgments 270</p> <p>References 270</p> <p><b>Part IV Application 273</b></p> <p><b>10 Commercial Markets for Li–S 275<br /></b><i>Mark Crittenden</i></p> <p>10.1 Technology Strengths Meet Market Needs 275</p> <p>10.1.1 Weight 275</p> <p>10.1.2 Safety 276</p> <p>10.1.3 Cost 276</p> <p>10.1.4 Temperature Tolerance 276</p> <p>10.1.5 Shipment and Storage 277</p> <p>10.1.6 Power Characteristics 277</p> <p>10.1.7 Environmentally Friendly Technology (Clean Tech) 278</p> <p>10.1.8 Pressure Tolerance 278</p> <p>10.1.9 Control 278</p> <p>10.2 Electric Aircraft 278</p> <p>10.3 Satellites 280</p> <p>10.4 Cars 280</p> <p>10.5 Buses 282</p> <p>10.6 Trucks 283</p> <p>10.7 Electric Scooter and Electric Bikes 284</p> <p>10.8 Marine 285</p> <p>10.9 Energy Storage 285</p> <p>10.10 Low-Temperature Applications 286</p> <p>10.11 Defense 286</p> <p>10.12 Looking Ahead 286</p> <p>10.13 Conclusion 287</p> <p><b>11 Battery Engineering 289<br /></b><i>Gregory J. Offer</i></p> <p>11.1 Mechanical Considerations 289</p> <p>11.2 Thermal and Electrical Considerations 289</p> <p>References 292</p> <p><b>12 Case Study 293<br /></b><i>Paul Brooks</i></p> <p>12.1 Introduction 293</p> <p>12.2 A Potted History of Eternal Solar Flight 293</p> <p>12.3 Why Has It Been So Difficult? 295</p> <p>12.4 Objectives of HALE UAV 297</p> <p>12.4.1 Stay Above the Cloud 298</p> <p>12.4.2 Stay Above the Wind 298</p> <p>12.4.3 Stay in the Sun 299</p> <p>12.4.4 Year-Round Markets 300</p> <p>12.4.5 Seasonal Markets 303</p> <p>12.4.6 How Valuable Are These Markets and What Does That Mean for the Battery? 303</p> <p>12.5 Worked Example – HALE UAV 303</p> <p>12.6 Cells, Batteries, and Real Life 305</p> <p>12.6.1 Cycle Life, Charge, and Discharge Rates 305</p> <p>12.6.2 Payload 306</p> <p>12.6.3 Avionics 306</p> <p>12.6.4 Temperature 306</p> <p>12.6.5 End-of-Life Performance 306</p> <p>12.6.6 Protection 306</p> <p>12.6.7 Balancing – Useful Capacity 307</p> <p>12.6.8 Summary of Real-World Issues 307</p> <p>12.7 A Quick Aside on Regenerative Fuel Cells 308</p> <p>12.8 So What Do We Need from Our Battery Suppliers? 309</p> <p>12.9 The Challenges for Battery Developers 310</p> <p>12.10 The Answer to the Title 310</p> <p>12.11 Summary 310</p> <p>Acknowledgments 311</p> <p>References 311</p> <p>Index 313</p>
<p><b>D<small>R</small>. MARK WILD</b> is Senior Production Manager at OXIS Energy, leading a diverse team manufacturing electrolytes and electrodes for Lithium Sulfur pouch cells, but involved in all aspects of developing this new technology. OXIS Energy is a UK SME devoted to the global commercialization of Lithium–Sulfur batteries. <p><b>D<small>R</small>. GREGORY J. OFFER</b> is Reader in the Department of Mechanical Engineering at Imperial College London. He leads a group of researchers working on understanding and using electrochemical devices.
<p><b>A GUIDE TO LITHIUM–SULFUR BATTERIES THAT EXPLORES THEIR MATERIALS, ELECTROCHEMICAL MECHANISMS AND MODELLING, AND INCLUDES RECENT SCIENTIFIC DEVELOPMENTS</b> <p><i>Lithium–Sulfur Batteries</i> offers a comprehensive examination of Lithium–Sulfur (Li-S) batteries from the viewpoint of the materials used in their construction, the underlying electrochemical mechanisms and how this translates into the characteristics of Li-S batteries. The authors – noted experts in the field – outline the approaches and techniques required to model Li-S batteries. <p><i>Lithium–Sulfur Batteries</i> reviews the application of Li-S batteries for commercial use and explores many broader issues including the development of battery management systems to control the unique characteristics of Li-S batteries. The authors include information on sulfur cathodes, electrolytes and other components used in making Li-S batteries and examine the role of lithium sulfide, the shuttle mechanism and its effects, and degradation mechanisms. The book contains a review of battery design and: <ul> <li>Discusses electrochemistry of Li-S batteries and the analytical techniques used to study Li-S batteries</li> <li>Offers information on the application of Li-S batteries for commercial use</li> <li>Distills years of research on Li-S batteries into one comprehensive volume</li> <li>Includes contributions from many leading scientists in the field of Li-S batteries</li> <li>Explores the potential of Li-S batteries to power larger battery applications such as automobiles, aviation and space vehicles</li> </ul> <p>Written for academic researchers, industrial scientists and engineers with an interest in the research, development, manufacture and application of next generation battery technologies, <i>Lithium–Sulfur Batteries</i> is an essential resource for accessing information on the construction and application of Li-S batteries.

Diese Produkte könnten Sie auch interessieren:

N4-Macrocyclic Metal Complexes
N4-Macrocyclic Metal Complexes
von: J.H. Zagal, Fethi Bedioui, J.P. Dodelet
PDF ebook
213,99 €
Modern Aspects of Electrochemistry 39
Modern Aspects of Electrochemistry 39
von: Constantinos G. Vayenas, Ralph E. White
PDF ebook
96,29 €