Details

Nanotechnology


Nanotechnology

Basic Calculations for Engineers and Scientists
1. Aufl.

von: Louis Theodore

126,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 03.01.2006
ISBN/EAN: 9780471751991
Sprache: englisch
Anzahl Seiten: 368

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

A practical workbook that bridges the gap between theory and practice in the nanotechnology field<br /> <br /> Because nanosized particles possess unique properties, nanotechnology is rapidly becoming a major interest in engineering and science. Nanotechnology: Basic Calculations for Engineers and Scientists-a logical follow-up to the author's previous text, Nanotechnology: Environmental Implications and Solutions-presents a practical overview of nanotechnology in a unique workbook format.<br /> <br /> The author has developed nearly 300 problems that provide a clear understanding of this growing field in four distinct areas of study:<br /> * Chemistry fundamentals and principles<br /> * Particle technology<br /> * Applications<br /> * Environmental concerns<br /> <br /> These problems have been carefully chosen to address the most important basic concepts, issues, and applications within each area, including such topics as patent evaluation, toxicology, particle dynamics, ventilation, risk assessment, and manufacturing. An introduction to quantum mechanics is also included in the Appendix. These stand-alone problems follow an orderly and logical progression designed to develop the reader's technical understanding.<br /> <br /> "This is certain to become the pacesetter in the field, a text to benefit both students of all technical disciplines and practicing engineers and researchers."<br /> -Dr. Howard Beim, Professor of Chemistry, U.S. Merchant Marine Academy<br /> <br /> "Dr. Theodore has covered most of the important nanotechnology subject matter in this ...work through simple, easy-to-follow problems."<br /> -John McKenna, President and CEO, ETS, Inc.
<p>Preface xvii</p> <p>Introduction xix</p> <p><b>PART 1: CHEMISTRY FUNDAMENTALS AND PRINCIPLES 1</b></p> <p><b>1 Units, Conversion Constants, and Dimensional Analysis 3</b></p> <p>1.1 Background on the Metric System 4</p> <p>1.2 Describe the SI System of Units 6</p> <p>1.3 The Conversion Constant gc 9</p> <p>1.4 Unit Conversion Factors: General Approach 10</p> <p>1.5 Temperature Conversions 11</p> <p>1.6 Pressure Calculations 11</p> <p>1.7 Density and Thermal Conductivity 13</p> <p>1.8 Viscosity Conversions 14</p> <p>1.9 Air Quality Standard 14</p> <p>1.10 Conversion Factors for Particulate Measurements 15</p> <p>1.11 Significant Figures and Scientific Notation 15</p> <p>1.12 Uncertainty in Measurement 17</p> <p><b>2 Atoms, Elements, and the Periodic Table 19</b></p> <p>2.1 Atomic Theory 21</p> <p>2.2 The Avogadro Number 21</p> <p>2.3 Mass and Size of Atoms 22</p> <p>2.4 Atomic Conversions 23</p> <p>2.5 Atomic Number, Atomic Weight, and Mass Number 24</p> <p>2.6 Bismuth Application 24</p> <p>2.7 Elements 24</p> <p>2.8 Symbols for Elements 27</p> <p>2.9 Periodic Table Application 28</p> <p>2.10 Isotopes 29</p> <p><b>3 Molecular Rearrangements 31</b></p> <p>3.1 License Plate Sets 31</p> <p>3.2 Chemical Permutations and Combinations 32</p> <p>3.3 Formula Weight and Molecular Weight 34</p> <p>3.4 Mole/Molecule Relationship 34</p> <p>3.5 Pollutant Chemical Formulas 35</p> <p>3.6 Stoichiometry 36</p> <p>3.7 Limiting and Excess Reactants 36</p> <p>3.8 Combustion of Chlorobenzene 37</p> <p>3.9 Metal Alloy Calculation 39</p> <p>3.10 Chemical Production 40</p> <p><b>4 Concentration Terms 43</b></p> <p>4.1 Density, Specific Gravity, and Bulk Density 43</p> <p>4.2 Classes of Solution 45</p> <p>4.3 Molality versus Molarity 45</p> <p>4.4 Molar Relationships 46</p> <p>4.5 Concentration Conversion 47</p> <p>4.6 Chlorine Concentration 48</p> <p>4.7 Trace Concentration 49</p> <p>4.8 Ash Emission 50</p> <p>4.9 Dilution Factor 51</p> <p>4.10 Nano Exhaust to Atmosphere 52</p> <p>4.11 Flue Gas Analysis 52</p> <p>4.12 pH 53</p> <p><b>5 Particle Size, Surface Area, and Volume 55</b></p> <p>5.1 Sphere, Cube, Rectangular Parallelepiped, and Cylinder 56</p> <p>5.2 Parallelogram, Triangle, and Trapezoid 57</p> <p>5.3 Polygons 57</p> <p>5.4 Elipse and Ellipsoid 58</p> <p>5.5 Cones 58</p> <p>5.6 Torus 59</p> <p>5.7 Area to Volume Ratios 59</p> <p>5.8 Area to Volume Calculation 60</p> <p>5.9 Increase in Sphere Surface Area 60</p> <p>5.10 Increase in Cube Surface Area 61</p> <p><b>6 Materials Science Principles 63</b></p> <p>6.1 Metals, Polymers, and Ceramics 63</p> <p>6.2 Composites, Semiconductors, and Biomaterials 64</p> <p>6.3 Crystal Coordination Numbers 64</p> <p>6.4 Geometry of Metallic Unit Cells 70</p> <p>6.5 Geometry of Ionic Unit Cells 75</p> <p>6.6 Packing Factor 78</p> <p>6.7 Density Calculation 80</p> <p>6.8 Directions and Planes 83</p> <p>6.9 Linear Density 88</p> <p>6.10 Planar Density 90</p> <p><b>7 Physical and Chemical Property Estimation 95</b></p> <p>7.1 Property Differences 96</p> <p>7.2 Material Selection 97</p> <p>7.3 Vapor Pressure 97</p> <p>7.4 Vapor Pressure Calculation 98</p> <p>7.5 Heat of Vaporization From Vapor Pressure Data 99</p> <p>7.6 Critical and Reduced Properties 100</p> <p>7.7 Estimating Enthalpy of Vaporization 101</p> <p>7.8 Viscosity 104</p> <p>7.9 Thermal Conductivity 106</p> <p>7.10 Thermal Conductivity Application 108</p> <p>7.11 Nokay Equation and Lydersen’s Method 109</p> <p>7.12 The Rihani and Doraiswamy Procedure, and the Lee–Kesler Equation 113</p> <p>References: Part 1 117</p> <p><b>PART 2: PARTICLE TECHNOLOGY 119</b></p> <p><b>8 Nature of Particulates 121</b></p> <p>8.1 Definition of Particulates 121</p> <p>8.2 Dust, Smoke, and Fumes 122</p> <p>8.3 Mist and Drizzle 123</p> <p>8.4 Changing Properties 123</p> <p>8.5 Dust Explosions 123</p> <p>8.6 Adsorption and Catalytic Activity in the Atmosphere 125</p> <p>8.7 Particle Size 125</p> <p>8.8 Particle Volume and Surface Area 126</p> <p>8.9 Volume/Surface Area Ratios 127</p> <p>8.10 Particle Formation 128</p> <p><b>9 Particle Size Distribution 131</b></p> <p>9.1 Representative Sampling 131</p> <p>9.2 Typical Particle Size Ranges 132</p> <p>9.3 Particle Size Distribution and Concentration for Industrial Particulates 132</p> <p>9.4 Particle Size Distribution 133</p> <p>9.5 Median and Mean Particle Size 133</p> <p>9.6 Standard Deviation 136</p> <p>9.7 The Frequency Distribution Curve 137</p> <p>9.8 The Cumulative Distribution Curve 138</p> <p>9.9 The Normal Distribution 139</p> <p>9.10 The Log Normal Distribution 141</p> <p>9.11 Effect of Size Distribution on Cumulative Distribution Plots 143</p> <p>9.12 Nanoparticle Size Variation With Time 145</p> <p><b>10 Particle Sizing and Measurement Methods 151</b></p> <p>10.1 Tyler and U.S. Standard Screens 152</p> <p>10.2 Equivalent Diameter Terms 154</p> <p>10.3 Aerodynamic Diameter 155</p> <p>10.4 Sizing Devices 157</p> <p>10.5 Rectangular Conduit Sampling 159</p> <p>10.6 Volumetric Flow Rate Calculation 160</p> <p>10.7 Particle Mass Flow Rate Calculation 162</p> <p>10.8 Average Particle Concentration 163</p> <p>10.9 Equal Annular Areas for Circular Ducts 164</p> <p>10.10 Traverse Point Location in Circular Ducts 165</p> <p>10.11 Duct Flow Equation Derivation 166</p> <p>10.12 Source Characteristics and Variations 168</p> <p><b>11 Fluid Particle Dynamics 171</b></p> <p>11.1 The Gravitational Force 172</p> <p>11.2 The Buoyant Force 172</p> <p>11.3 The Drag Force 174</p> <p>11.4 The Drag Coefficient 174</p> <p>11.5 Equation of Particle Motion/Balance of Forces on a Particle 176</p> <p>11.6 Particle Settling Velocity Equations 177</p> <p>11.7 Determination of the Flow Regime 178</p> <p>11.8 Settling Velocity Application 179</p> <p>11.9 The Cunningham Correction Factor 180</p> <p>11.10 Cunningham Correction Factor Values for Air at Atmospheric Pressure 181</p> <p>11.11 Particle Settling Velocity – Different Regimes 182</p> <p>11.12 Brownian Motion/Molecular Diffusion 186</p> <p><b>12 Particle Collection Mechanisms 187</b></p> <p>12.1 Gravity 188</p> <p>12.2 Centrifugal Force 188</p> <p>12.3 Inertial Impaction and Interception 190</p> <p>12.4 Electrostatic Effects 192</p> <p>12.5 Thermophoresis and Diffusiophoresis 193</p> <p>12.6 Acceleration Effects 194</p> <p>12.7 Brownian Motion/Molecular Diffusion Effects 194</p> <p>12.8 Nonspherical Particles 196</p> <p>12.9 Wall Effects 197</p> <p>12.10 Multiparticle Effects 198</p> <p>12.11 Multidimensional Flow 198</p> <p>12.12 Collection Efficiency for Nanosized/Submicron Particles 199</p> <p><b>13 Particle Collection Efficiency 201</b></p> <p>13.1 Collection Efficiency: Loading Data 202</p> <p>13.2 Collection Efficiency: Mass Rate 202</p> <p>13.3 Efficiency of Multiple Collectors 204</p> <p>13.4 Penetration 204</p> <p>13.5 Collection Efficiency: Numbers Basis 205</p> <p>13.6 Particle Size–Collection Efficiency Relationships 206</p> <p>13.7 Collection Efficiency: Surface Area Basis 207</p> <p>13.8 Particle Size Distribution/Size–Efficiency Calculation 208</p> <p>13.9 Check for Emission Standards Compliance: Numbers Basis 210</p> <p>13.10 Anderson 2000 Sampler 211</p> <p>References: Part 2 215</p> <p><b>PART 3: APPLICATIONS 217</b></p> <p><b>14 Legal Considerations 219</b></p> <p>14.1 Intellectual Property Law 219</p> <p>14.2 Patents 220</p> <p>14.3 Contract Law 220</p> <p>14.4 Tort Law 221</p> <p>14.5 Recent Patent Activity 222</p> <p>14.6 Conservation Law For Mass 222</p> <p>14.7 Conservation Law for Energy 224</p> <p>14.8 The Second Law of Thermodynamics 226</p> <p>14.9 Allowable Patent Application Claims 228</p> <p>14.10 Practicing One’s Own Invention 229</p> <p><b>15 Size Reduction 231</b></p> <p>15.1 Size Reduction Objectives 231</p> <p>15.2 Plasma-Based and Flame-Hydrolysis Methods 232</p> <p>15.3 Chemical Vapor Deposition and Electrodeposition 233</p> <p>15.4 Sol-Gel Processing 233</p> <p>15.5 Mechanical Crushing 235</p> <p>15.6 Promising Technologies 235</p> <p>15.7 Energy and Power Requirements 236</p> <p>15.8 Potential Dust Explosions With Size Reduction 238</p> <p>15.9 Material Balance Size Reduction 238</p> <p>15.10 Size Reduction Surface Area Increase 239</p> <p>15.11 Fines Eductor Application 241</p> <p>15.12 Fines Eductor Size Reduction 242</p> <p><b>16 Prime Materials 245</b></p> <p>16.1 Metals 246</p> <p>16.2 Iron 246</p> <p>16.3 Aluminum 247</p> <p>16.4 Nickel 247</p> <p>16.5 Silver 248</p> <p>16.6 Gold 248</p> <p>16.7 Iron Oxides 248</p> <p>16.8 Aluminum Oxide 249</p> <p>16.9 Zirconium Dioxide 249</p> <p>16.10 Titanium Dioxide 250</p> <p>16.11 Zinc Oxide 251</p> <p>16.12 Silica Products 251</p> <p><b>17 Production Manufacturing Routes 253</b></p> <p>17.1 Carbon Nanotubes and Buckyballs 254</p> <p>17.2 Semiconductor Manufacturing 255</p> <p>17.3 Advanced Composites 256</p> <p>17.4 Advanced Ceramics 258</p> <p>17.5 Catalytic and Photocatalytic Applications 260</p> <p>17.6 Gas Sensors and Other Analytical Devices 261</p> <p>17.7 Consumer Products 262</p> <p>17.8 Drug Delivery Mechanisms and Medical Therapeutics 262</p> <p>17.9 Microelectronics Applications 264</p> <p>17.10 Future Activites 264</p> <p><b>18 Ventilation 267</b></p> <p>18.1 Indoor Air Quality 268</p> <p>18.2 Indoor Air/Ambient Air Comparison 269</p> <p>18.3 Sources of Contaminents in Indoor Air 269</p> <p>18.4 Industrial Ventilation System 271</p> <p>18.5 Dilution Ventilation vs. Local Exhaust Systems 271</p> <p>18.6 Ventilation Definitions 273</p> <p>18.7 Air Exchange Rate 276</p> <p>18.8 Accidental Emission 278</p> <p>18.9 Dilution Ventilation Application 279</p> <p>18.10 Vinyl Chloride Application 280</p> <p>18.11 Ventilation Models 282</p> <p>18.12 Minimum Ventilation Flowrate 286</p> <p><b>19 Dispersion Considerations 289</b></p> <p>19.1 Atmospheric Deposition Calculation 290</p> <p>19.2 Ground Deposition of Particles 291</p> <p>19.3 Plume Rise 293</p> <p>19.4 Pasquill–Gifford Model 294</p> <p>19.5 Ground-Level Particle Deposition 298</p> <p>19.6 Line and Area Sources 300</p> <p>19.7 Instantaneous “Puff” Model 303</p> <p>19.8 Instantaneous “Puff” Sources 306</p> <p>19.9 U.S. EPA Dispersion Models 307</p> <p>19.10 Dispersion in Water Systems and Soils 308</p> <p>19.11 Canal Concentration Profile 309</p> <p>19.12 Accidenctal/Emergency Discharge into a Lake/Reservoir 311</p> <p><b>20 Ethics 315</b></p> <p>20.1 Determination of Ethical Values 315</p> <p>20.2 Do’s and Don’ts 316</p> <p>20.3 Codes of Ethics 316</p> <p>20.4 The Heavy Metal Dilemma 317</p> <p>20.5 Let Them Worry About It 319</p> <p>20.6 It’s In the Air 321</p> <p>20.7 Cheap at What Price 322</p> <p>20.8 Safety Comes First 323</p> <p>20.9 Intellectual Property 324</p> <p>20.10 There’s No Such Thing as a Free Seminar 325</p> <p>References: Part 3 327</p> <p><b>PART 4: ENVIRONMENTAL CONCERNS 331</b></p> <p><b>21 Environmental Regulations 333</b></p> <p>21.1 The Regulatory System 334</p> <p>21.2 Air Quality Issues 335</p> <p>21.3 Particulate Loading 337</p> <p>21.4 Clean Air Act Acronyms 339</p> <p>21.5 Water Pollution Control 342</p> <p>21.6 Water Quality Issues 343</p> <p>21.7 Clean Water Act and PWPs 345</p> <p>21.8 Wastewater Composition 346</p> <p>21.9 Solid Waste Management Issues 348</p> <p>21.10 Hazardous Waste Incinerator 349</p> <p>21.11 Nanotechnology Environmental Regulations Overview 350</p> <p>21.12 Nanotechnology Opponents 352</p> <p><b>22 Toxicology 353</b></p> <p>22.1 The Science of Toxicology 353</p> <p>22.2 Toxicology Classifications 354</p> <p>22.3 Routes of Exposure 354</p> <p>22.4 Threshold Limit Value (TLV) 355</p> <p>22.5 Toxicology Terminology 356</p> <p>22.6 TLV vs. PEL 357</p> <p>22.7 Toxicity Factors 357</p> <p>22.8 OSHA and NIOSH 358</p> <p>22.9 Toxicology Determination 359</p> <p>22.10 IDLH and Lethal Level 359</p> <p>22.11 Chemical Exposure 361</p> <p>22.12 Threshold Limit Values 362</p> <p><b>23 Noncarcinogens 365</b></p> <p>23.1 Hazard Quotient 365</p> <p>23.2 Reference Dose 366</p> <p>23.3 Concept of Threshold 367</p> <p>23.4 Exposure Duration Classification 368</p> <p>23.5 Risk For Multiple Agents: Chronic Exposure 369</p> <p>23.6 Risk for Multiple Agents: Subchronic Exposure 370</p> <p>23.7 Multiple Exposure Pathways 371</p> <p>23.8 MCL and RfD 372</p> <p>23.9 Uncertainly and Modifying Factors 372</p> <p>23.10 Calculating an RfD from NOAEL 373</p> <p>23.11 Metal Plating Facility Application 374</p> <p>23.12 Noncarcinogen Calculation Procedure 374</p> <p><b>24 Carcinogens 377</b></p> <p>24.1 Nonthreshold Concept 377</p> <p>24.1 Weight of Evidence and Slope Factor 378</p> <p>24.3 Carcinogenic Toxicity Values 380</p> <p>24.4 Benzene in Water Application 381</p> <p>24.5 Excess Lifetime Cancer Cases 382</p> <p>24.6 Action Level 382</p> <p>24.7 Accidental Spill 383</p> <p>24.8 Uncertainties and Limitations 384</p> <p>24.9 Multiple Chemical Agents and Exposure Pathways 385</p> <p>24.10 Exponential Risk Model 386</p> <p>24.11 Risk Algorithm 386</p> <p>24.12 Risk Algorithm Application for Benzene 388</p> <p><b>25 Health Risk Assessment 391</b></p> <p>25.1 Risk Definitions 392</p> <p>25.2 The Health Risk Evaluation Process 392</p> <p>25.3 Standand Values for Individuals 394</p> <p>25.4 Qualitative Risk Scenarios 395</p> <p>25.5 Example of a Health Risk Assessment 396</p> <p>25.6 Chemical Exposure in a Laboratory 397</p> <p>25.7 Laboratory Spill 398</p> <p>25.8 Respirators 399</p> <p>25.9 Performance of a Carbon Cartridge Respirator 400</p> <p>25.10 Sampling Program 402</p> <p><b>26 Hazard Risk Assessment 407</b></p> <p>26.1 Example of a Hazard 408</p> <p>26.2 Risk Evaluation Process for Accidents 408</p> <p>26.3 Plant and Process Safety 411</p> <p>26.4 Series and Parallel Systems 412</p> <p>26.5 Binomial Distribution 413</p> <p>26.6 The Poisson Distribution 414</p> <p>26.7 The Weibull Distribution 415</p> <p>26.8 The Normal Distribution 416</p> <p>26.9 Soil Contamination 419</p> <p>26.10 Event Tree Analysis 420</p> <p>26.11 Fault Tree Analysis 421</p> <p>26.12 Upper and Lower Flamability Limits 425</p> <p><b>27 Epidemiology 429</b></p> <p>27.1 Historical View 429</p> <p>27.2 Occupational Health 430</p> <p>27.3 Descriptive Studies 431</p> <p>27.4 Probability 432</p> <p>27.5 Prevalence 432</p> <p>27.6 Incidence Rate 433</p> <p>27.7 The Mean 434</p> <p>27.8 The Variance and the Standard Deviation 435</p> <p>References: Part 4 437</p> <p>Appendix Quantum Mechanics 439</p> <p>Index 447</p>
"…not only be helpful for students of this relatively new science but students of several related sciences…and anyone in the field." (<i>E-STREAMS</i>, June 2007) <p>  "...would benefit students and engineers or scientists working with nanomaterials or those needing to brush up on general chemistry or who need a reference book on various chemistry calculations." (<i>IEEE Electrical Insulation Magazine</i>, November/December 2006)</p> <p>"…the author has done an exceedingly good job at providing problems and their solutions." (<i>Journal of Hazardous Materials</i>, September 1, 2006)</p>
<b>LOUIS THEODORE</b>, Eng. Sc.D., is a consultant for Theodore Tutorials, a company specializing in providing training solutions to industry, academia, and government. In addition to receiving awards from both the International Air and Waste Management Association and the American Society for Engineering Education, Dr. Theodore is the author/coauthor of numerous books, including <i>Nanotechnology: Environmental Implications and Solutions</i>; Introduction <i>to Hazardous Waste Incineration, Second Edition</i>; and <i>Handbook of Chemical and Environmental Engineering Calculations</i> (all published by Wiley).
<b>A practical workbook that bridges the gap between theory and practice in the nanotechnology field</b> <p>Because nanosized particles possess unique properties, nanotechnology is rapidly becoming a major interest in engineering and science. Nanotechnology: Basic Calculations for Engineers and Scientists—a logical follow-up to the author's previous text, Nanotechnology: Environmental Implications and Solutions—presents a practical overview of nanotechnology in a unique workbook format.</p> <p>The author has developed nearly 300 problems that provide a clear understanding of this growing field in four distinct areas of study:</p> <ul> <li>Chemistry fundamentals and principles</li> <li>Particle technology</li> <li>Applications</li> <li>Environmental concerns</li> </ul> <p>These problems have been carefully chosen to address the most important basic concepts, issues, and applications within each area, including such topics as patent evaluation, toxicology, particle dynamics, ventilation, risk assessment, and manufacturing. An introduction to quantum mechanics is also included in the Appendix. These stand-alone problems follow an orderly and logical progression designed to develop the reader's technical understanding.</p> <p>"This is certain to become the pacesetter in the field, a text to benefit both students of all technical disciplines and practicing engineers and researchers."<br /> —Dr. Howard Beim, Professor of Chemistry, U.S. Merchant Marine Academy</p> <p>"Dr. Theodore has covered most of the important nanotechnology subject matter in this ...work through simple, easy-to-follow problems."<br /> —John McKenna, President and CEO, ETS, Inc.</p>

Diese Produkte könnten Sie auch interessieren:

Chemistry for the Protection of the Environment 4
Chemistry for the Protection of the Environment 4
von: Robert Mournighan, Marzenna R. Dudzinska, John Barich, Marjorie A. Gonzalez, Robin K. Black
PDF ebook
213,99 €
Wörterbuch Labor / Laboratory Dictionary
Wörterbuch Labor / Laboratory Dictionary
von: Klaus Roth, Theodor C.H. Cole
PDF ebook
36,99 €