Details

Photoenergy and Thin Film Materials


Photoenergy and Thin Film Materials


1. Aufl.

von: Xiao-Yu Yang

257,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 26.03.2019
ISBN/EAN: 9781119580553
Sprache: englisch
Anzahl Seiten: 500

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>This book provides the latest research & developments and future trends in photoenergy and thin film materials—two important</b> <b>areas that have the potential to spearhead the future of the industry.</b></p> <p>Photoenergy materials are expected to be a next generation class of materials to provide secure, safe, sustainable and affordable energy. Photoenergy devices are known to convert the sunlight into electricity. These types of devices are simple in design with a major advantage as they are stand-alone systems able to provide megawatts of power. They have been applied as a power source for solar home systems, remote buildings, water pumping, megawatt scale power plants, satellites, communications, and space vehicles. With such a list of enormous applications, the demand for photoenergy devices is growing every year.</p> <p>On the other hand, thin films coating, which can be defined as the barriers of surface science, the fields of materials science and applied physics are progressing as a unified discipline of scientific industry. A thin film can be termed as a very fine, or thin layer of material coated on a particular surface, that can be in the range of a nanometer in thickness to several micrometers in size. Thin films are applied in numerous areas ranging from protection purposes to electronic semiconductor devices.</p> <p>The 16 chapters in this volume, all written by subject matter experts, demonstrate the claim that both photoenergy and thin film materials have the potential to be the future of industry.</p>
<p>Preface xvii</p> <p><b>Part I: Advanced Photoenergy Materials 1</b></p> <p><b>1 Use of Carbon Nanostructures in Hybrid Photovoltaic Devices 3<br /></b><i>Teresa Gatti and Enzo Menna</i></p> <p>1.1 Introduction 4</p> <p>1.2 Carbon Nanostructures 7</p> <p>1.2.1 Structure and Physical Properties 7</p> <p>1.2.2 Chemical Functionalization Approaches 9</p> <p>1.3 Use of Carbon Nanostructures in Hybrid Photovoltaic Devices 12</p> <p>1.3.1 Use of Carbon Nanostructures in Dye Sensitized Solar Cells 13</p> <p>1.3.2 Use of Carbon Nanostructures in Perovskite Solar Cells 21</p> <p>1.4 Conclusions and Outlook 38</p> <p>Acknowledgements 40</p> <p>References 41</p> <p><b>2 Dye-Sensitized Solar Cells: Past, Present and Future 49<br /></b><i>Joaquín Calbo</i></p> <p>2.1 Introduction 49</p> <p>2.2 Operational Mechanism 52</p> <p>2.3 Sensitizer 56</p> <p>2.3.1 Ruthenium-Based Dyes 56</p> <p>2.3.2 Organic Dyes 57</p> <p>2.3.3 Natural Dyes 60</p> <p>2.3.4 Porphyrin Dyes 62</p> <p>2.3.5 Quantum Dot Sensitizers 64</p> <p>2.3.6 Perovskite-Based Sensitizers 66</p> <p>2.4 Photoanode 68</p> <p>2.4.1 Nanoarchitectures 69</p> <p>2.4.2 Light Scattering Materials 70</p> <p>2.4.3 Composites 72</p> <p>2.4.4 Doping 74</p> <p>2.4.5 Interfacial Engineering 75</p> <p>2.4.6 TiCl<sub>4</sub> Treatment 76</p> <p>2.5 Electrolyte 77</p> <p>2.5.1 Liquid Electrolytes 78</p> <p>2.5.2 Quasi-Solid-State Electrolytes 81</p> <p>2.5.3 Solid-State Transport Materials 83</p> <p>2.6 Counter Electrode 86</p> <p>2.6.1 Metals and Alloys 86</p> <p>2.6.2 Carbon-Based Materials 88</p> <p>2.6.3 Conducting Polymers 90</p> <p>2.6.4 Transition Metal Compounds 91</p> <p>2.6.5 Hybrid Materials 93</p> <p>2.7 Summary and Perspectives 95</p> <p>Acknowledgements 96</p> <p>References 96</p> <p><b>3 Perovskite Solar Modules: Correlation between Efficiency and Scalability 121<br /></b><i>Fabio Matteocci, Luigi Angelo Castriotta and Alessandro Lorenzo Palma</i></p> <p>3.1 Introduction 122</p> <p>3.2 Printing Techniques 125</p> <p>3.2.1 Solution Processing Techniques 126</p> <p>3.2.2 Vacuum-Based Techniques 127</p> <p>3.3 Scaling Up Process 130</p> <p>3.3.1 Spin Coated PSM 130</p> <p>3.3.2 Blade Coated PSM 132</p> <p>3.3.3 Slot Die Coating 133</p> <p>3.3.4 Screen-Printed PSM 134</p> <p>3.3.5 Vacuum-Based PSM 136</p> <p>3.3.6 Solvent and Vacuum Free Perovskite Deposition 137</p> <p>3.4 Modules Architecture 137</p> <p>3.4.1 Series-Connected Solar Modules 138</p> <p>3.4.2 Parallel-Connected Solar Modules 139</p> <p>3.5 Process Flow for the Production of Perovskite Based Solar Modules 141</p> <p>3.5.1 The P1-P2-P3 Process 142</p> <p>References 145</p> <p><b>4 Brief Review on Copper Indium Gallium Diselenide (CIGS) Solar Cells 157<br /></b><i>Raja Mohan and Rini Paulose</i></p> <p>4.1 Introduction 157</p> <p>4.1.1 Photovoltaic Effect 158</p> <p>4.1.2 Solar Cell Material 158</p> <p>4.2 Factors Affecting PV Performance 159</p> <p>4.2.1 Doping 159</p> <p>4.2.2 Diffusion and Drift Current 159</p> <p>4.2.3 Recombination 160</p> <p>4.2.4 Diffusion Length 160</p> <p>4.2.5 Grain Size and Grain Boundaries 161</p> <p>4.2.6 Cell Thickness 161</p> <p>4.2.7 Cell Surface 161</p> <p>4.3 CIGS Based Solar Cell and Its Configuration 161</p> <p>4.3.1 CIGS Configuration 163</p> <p>4.4 Advances in CIGS Solar Cell 179</p> <p>4.4.1 CIGS-Tandem Solar Cell 179</p> <p>4.4.2 Flexible CIGS Solar Cell 181</p> <p>4.5 Summary 182</p> <p>Acknowledgement 183</p> <p>References 183</p> <p><b>5 Interface Engineering for High-Performance Printable Solar Cells 193<br /></b><i>Jinho Lee, Hongkyu Kang, Soonil Hong, Soo-Young Jang, Jong-Hoon Lee, Sooncheol Kwon, Heejoo Kim and Kwanghee Lee</i></p> <p>5.1 Introduction 194</p> <p>5.2 Electrolytes 195</p> <p>5.2.1 Introduction of Electrolytes for Interface Engineering 195</p> <p>5.2.2 Applications of Electrolytes to Printable Solar Cells 197</p> <p>5.3 Transition Metal Oxides (TMOs) 210</p> <p>5.3.1 Introduction of TMOs as ESLs for Interface Engineering 210</p> <p>5.3.2 Applications of TMOs for Printable Solar Cells 212</p> <p>5.3.3 Applications of TMOs as HSLs for Printable Solar Cells 219</p> <p>5.4 Organic Semiconductors 225</p> <p>5.4.1 Introduction of Organic Semiconductors for Interface Engineering 225</p> <p>5.4.2 Applications for Printable Solar Cells 226</p> <p>5.5 Outlook 237</p> <p>Acknowledgement 238</p> <p>References 238</p> <p><b>6 Screen Printed Thick Films on Glass Substrate for Optoelectronic Applications 253<br /></b><i>Rayees Ahmad Zargar and Manju Arora</i></p> <p>6.1 What Is Thick Film, Its Technology with Advantages 253</p> <p>6.1.1 Thick Film Materials Substrates 254</p> <p>6.1.2 Thick Film Inks 254</p> <p>6.1.3 Sheet Resistivity 255</p> <p>6.1.4 Conductor Pastes 255</p> <p>6.1.5 Dielectric Pastes 256</p> <p>6.1.6 Resistor Pastes 256</p> <p>6.2 To Select Suitable Technology for Film Deposition by Considering the Economy, Flexibility, Reliability and Performance Aspects 256</p> <p>6.3 Experimental Procedure for Preparation of Thick Films by Screen Printing Process 257</p> <p>6.4 Introduction of Semiconductor Metal Oxide (SMO) and Their Usage in Optoelectronic and Chemical Sensor Applications 262</p> <p>6.4.1 Preparation of Cd0.75Zn0.25O Composition for Coating on Glass Substrate 263</p> <p>6.5 To Study the Structural, Optical and Electrical Characteristics of Thick Film 264</p> <p>6.5.1 X-Ray Diffraction (XRD) Analysis 264</p> <p>6.5.2 Scanning Electron Microscopy (SEM) Analysis 265</p> <p>6.5.3 Optical Properties 265</p> <p>6.5.4 Electrical Conduction Mechanism 270</p> <p>6.6 To Study the Sensitivity, Selectivity, Stability and Response and Recovery Time for Various Gases: CO<sub>2</sub>, LPG, Ethanol, NH<sub>3</sub>, NO<sub>2</sub> and H<sub>2</sub>S at Different Operating Temperatures 272</p> <p>6.6.1 Mechanical Sensor 272</p> <p>6.6.2 Sensing Performance of the Sensor 277</p> <p>6.7 Conclusion(s) 279</p> <p>Acknowledgments 279</p> <p>References 280</p> <p><b>7 Hausmannite (Mn<sub>3</sub>O<sub>4</sub>) – Synthesis and Its Electrochemical, Catalytic and Sensor Application 283<br /></b><i>Rini Paulose and Raja Mohan</i></p> <p>7.1 Hausmannite as Energy Storage Material: Introduction 284</p> <p>7.1.1 Synthesis Methods 286</p> <p>7.1.2 Electrochemical Behaviour 289</p> <p>7.2 Hausmannite - Catalytic Application 304</p> <p>7.2.1 Photocatalytic Application 305</p> <p>7.2.2 Electrocatalytic Application 306</p> <p>7.3 Hausmannite - Sensor Application 308</p> <p>7.4 Summary 309</p> <p>Acknowledgement 310</p> <p>References 310</p> <p><b>Part II: Advanced Thin Films Materials 321</b></p> <p><b>8 Sol-Gel Technology to Prepare Advanced Coatings 323<br /></b><i>Flavia Bollino and Michelina Catauro</i></p> <p>8.1 Introduction 324</p> <p>8.1.1 Sol-Gel Chemistry 327</p> <p>8.2 Sol-Gel Coating Preparation 335</p> <p>8.2.1 Dip Coating 337</p> <p>8.2.2 Spin Coating 341</p> <p>8.3 Organic-Inorganic Hybrid Sol-Gel Coatings 346</p> <p>8.4 Sol-Gel Coating Application 350</p> <p>8.4.1 Optical Coatings 351</p> <p>8.4.2 Electronic Films 352</p> <p>8.4.3 Protective Films 354</p> <p>8.4.4 Porous Films 357</p> <p>8.4.5 Biomedical Application of the Sol-Gel Coatings 358</p> <p>8.5 Conclusion 366</p> <p>References 367</p> <p><b>9 The Use of Power Spectrum Density for Surface Characterization of Thin Films 379<br /></b><i>Fredrick Madaraka MwemaOluseyi Philip Oladijo and Esther Titilayo Akinlabi</i></p> <p>9.1 Introduction 380</p> <p>9.1.1 Uses of Power Spectral Density 382</p> <p>9.1.2 Theory of Power Spectral Density 383</p> <p>9.2 Literature Review 387</p> <p>9.3 Methodology 389</p> <p>9.3.1 Thin Film Deposition 390</p> <p>9.3.2 Atomic Force Microscopy 390</p> <p>9.3.3 Image Analysis 391</p> <p>9.4 Results and Discussion 395</p> <p>9.4.1 AFM Images and Line Profile Analysis 395</p> <p>9.4.2 Power Spectral Density Profiles 398</p> <p>9.5 Conclusion 407</p> <p>References 409</p> <p><b>10 Advanced Coating Nanomaterials for Drug Release Applications 413<br /></b><i>Natalia A. Scilletta, Sofía Municoy, Martín G. Bellino, Galo J. A. A. Soler-Illia, Martín F. Desimone and Paolo N. Catalano</i></p> <p>10.1 Introduction 414</p> <p>10.2 Ceramic Coating Nanomaterials 415</p> <p>10.2.1 Hydroxyapatite-Based Nanocoatings 415</p> <p>10.2.2 Oxide-Based Nanocoatings 420</p> <p>10.3 Biopolymer Coating Nanomaterials 433</p> <p>10.4 Composite Coating Nanomaterials 439</p> <p>10.5 Conclusion and Perspectives 445</p> <p>References 461</p> <p><b>11 Advancement in Material Coating for Engineering Applications 473<br /></b><i>Idowu David Ibrahim, Emmanuel Rotimi Sadiku, Yskandar Hamam, Yasser Alayli, Tamba Jamiru, Williams Kehinde Kupolati, Azunna Agwo Eze, Stephen C. Agwuncha, Chukwunonso Aghaegbulam Uwa, Moses Oluwafemi Oyesola, Oluyemi Ojo Daramola and Mokgaotsa Jonas Mochane</i></p> <p>11.1 Introduction 474</p> <p>11.2 Material Coating Methods 475</p> <p>11.3 Electrostatic Powder Coating 475</p> <p>11.3.1 Galvanizing 477</p> <p>11.3.2 Powder Coating 480</p> <p>11.4 Influence of Coating on the Base Material 480</p> <p>11.4.1 Corrosion Resistance 480</p> <p>11.4.2 Wear Resistance 485</p> <p>11.5 Factors Affecting Properties of Coated Materials 487</p> <p>11.6 Areas of Application of Coated Materials 490</p> <p>11.6.1 Oil and Water Separation 490</p> <p>11.6.2 Membrane Technology 491</p> <p>11.6.3 Construction and Aircraft 492</p> <p>11.7 Conclusion 493</p> <p>Acknowledgment 494</p> <p>References 494</p> <p><b>12 Polymer and Carbon-Based Coatings for Biomedical Applications 499<br /></b><i>Shesan J. Owonubi, Linda Z. Linganiso, Tshwafo E. Motaung and Sandile P. Songca</i></p> <p>12.1 Introduction 500</p> <p>12.2 Coating 500</p> <p>12.3 Surface Interactions with Biological Systems 501</p> <p>12.3.1 Cell Adhesion 501</p> <p>12.3.2 Interactions between Blood and Coating Material 502</p> <p>12.3.3 Biofilm Formation as a Result of Bacterial Attachment 502</p> <p>12.4 Biomedical Applications of Coatings 502</p> <p>12.5 Polymer Based Coating for Biomedical Applications 504</p> <p>12.5.1 Drug Delivery 504</p> <p>12.5.2 Prevention of Infections from Micro-Organisms 506</p> <p>12.5.3 Biosensors 510</p> <p>12.5.4 Tissue Engineering 512</p> <p>12.5.5 Cardiovascular Stents 513</p> <p>12.5.6 Orthopaedic Implants 515</p> <p>12.6 Carbon-Based Coatings for Biomedical Applications 517</p> <p>12.6.1 Drug Delivery 517</p> <p>12.6.2 Prevention of Infections from Microorganisms 518</p> <p>12.6.3 Tissue Engineering 519</p> <p>12.6.4 Cardiovascular Stents 519</p> <p>12.6.5 Orthopaedic Implants 521</p> <p>12.7 Conclusion and Future Trends 522</p> <p>Acknowledgement 523</p> <p>References 523</p> <p><b>13 Assessment of the Effectiveness of Producing Mineral Fillers via Pulverization for Ceramic Coating Materials 537<br /></b><i>Anja Terzić and Lato Pezo</i></p> <p>13.1 Introduction 538</p> <p>13.2 Experimental 540</p> <p>13.2.1 The Characterization of the Materials Used in the Experiment 540</p> <p>13.2.2 Mechano-Chemical Activation Procedure 541</p> <p>13.2.3 Mathematical Modeling 542</p> <p>13.3 Results and Discussion 544</p> <p>13.3.1 Descriptive Statistics of the Results of Mechano-Chemical Activation 544</p> <p>13.3.2 Principal Component Analyses 547</p> <p>13.3.3 Response Surface Methodology 549</p> <p>13.3.4 Standard Score Analysis 552</p> <p>13.4 Conclusion 557</p> <p>Acknowledgement 558</p> <p>References 559</p> <p><b>14 Advanced Materials for Laser Surface Cladding: Processing, Manufacturing, Challenges and Future Prospects 563<br /></b><i>Oluranti Agboola, Patricia Popoola, Rotimi Sadiku, Samuel Eshorame Sanni, Damilola E. Babatunde, Peter Adeniyi Alaba and Sunday Ojo Fayomi</i></p> <p>14.1 Introduction 564</p> <p>14.2 Laser Processing Techniques 565</p> <p>14.2.1 Pulsed Laser Deposition (PLD) 565</p> <p>14.2.2 Matrix-Assisted Pulsed Laser Evaporation (MAPLE) 569</p> <p>14.2.3 Ultrashort Laser Pulses 570</p> <p>14.2.4 Hybrid Laser Arc Welding (HLAW) 580</p> <p>14.3 Physic of Laser Surface Treatment (LST) 582</p> <p>14.3.1 Physic of Laser Cladding Process 583</p> <p>14.3.2 Governing Equation 583</p> <p>14.4 Laser Fabrication 587</p> <p>14.4.1 Laser Microfabrication 587</p> <p>14.4.2 Laser Nanofabrication 590</p> <p>14.5 Laser Additive Manufacturing (LAM) 593</p> <p>14.5.1 Laser Melting (LM) 593</p> <p>14.5.2 Laser Sintering (LS) 596</p> <p>14.5.3 Laser Metal Deposition (LMD) 597</p> <p>14.6 Challenges of Laser Material Processing 599</p> <p>14.7 Future Prospect of Advance Materials for Laser Cladding 600</p> <p>14.8 Conclusion 601</p> <p>References 601</p> <p><b>15 Functionalization of Iron Oxide-Based Magnetic Nanoparticles with Gold Shells 617<br /></b><i>Arūnas Jagminas and Agnė Mikalauskaitė</i></p> <p>15.1 Introduction 618</p> <p>15.2 Synthesis of Iron Oxide-Based Nanoparticles by Co-Precipitation Reaction 618</p> <p>15.3 Synthesis of Iron Oxide-Based Nanoparticles by Thermal Decomposition 619</p> <p>15.4 Less Popular Chemical Syntheses 620</p> <p>15.5 Gold Shell Formation Onto the Surface of Magnetite Nanoparticles 620</p> <p>15.6 Methionine-Induced Deposition of Au0/Au+Species 633</p> <p>15.7 Application Trends 639</p> <p>15.7.1 Imagining 639</p> <p>15.7.2 Hyperthermia 643</p> <p>15.7.3 Antimicrobial Agents 645</p> <p>15.7.4 Bio-Separation 646</p> <p>15.7.5 Targeted Drug Delivery 646</p> <p>15.8 Outlooks 647</p> <p>References 648</p> <p><b>16 Functionalized-Graphene and Graphene Oxide: Fabrication and Application in Catalysis 661<br /></b><i>Mahmoud Nasrollahzadeh, Mohaddeseh Sajjadi and S. Mohammad Sajadi</i></p> <p>16.1 Introduction 662</p> <p>16.2 Synthesis 665</p> <p>16.2.1 Micromechanical Exfoliation of Graphite 666</p> <p>16.2.2 Chemical Vapor Deposition of Graphene 668</p> <p>16.2.3 Reduction of Graphite Oxide 669</p> <p>16.2.4 Epitaxial Growth of Graphene on Silicon Carbide 672</p> <p>16.2.5 Unzipping CNTs 673</p> <p>16.3 Graphene and Graphene Oxide Functionalization 673</p> <p>16.3.1 Covalent Surface Functionalization of Graphene 676</p> <p>16.3.2 Noncovalent Surface Functionalization of Graphene 690</p> <p>17.3.3 Other Methods of Functionalization of Graphene 692</p> <p>16.4 Properties and Applications of Graphene 694</p> <p>16.5 Applications of Graphene-Based Nanocomposites 698</p> <p>16.5.1 Graphene-Based Nanocomposite as Photocatalyst 698</p> <p>16.5.2 Graphene-Based Nanocomposite as Catalyst 700</p> <p>16.6 Conclusion 709</p> <p>References 710</p> <p>Index 729</p>
<p><b>Xiao-Yu Yang</b> earned his BS degree from Jilin University in 2000 and his joint PhD degree from Jilin University, China and FUNDP, Belgium (co-education) in 2007. He is currently working as a full professor at the State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, China, and as a visiting professor at Harvard University. He is editor of the <i>Journal of Nanostructures and Nano-Objects</i>. His research is aimed at thin film, self-assembly technology, hierarchical materials, catalysis, and cell-surface-engineering. He has authored and co-authored more than 50 scientific publications and 10 patents.
<p><b>This book provides the latest research & developments and future trends in photoenergy and thin film materials—two important</b><i></i> <b>areas that have the potential to spearhead the future of the industry.</b> <p>Photoenergy materials are expected to be a next generation class of materials to provide secure, safe, sustainable and affordable energy. Photoenergy devices are known to convert the sunlight into electricity. These types of devices are simple in design with a major advantage as they are stand-alone systems able to provide megawatts of power. They have been applied as a power source for solar home systems, remote buildings, water pumping, megawatt scale power plants, satellites, communications, and space vehicles. With such a list of enormous applications, the demand for photoenergy devices is growing every year. <p>On the other hand, thin films coating, which can be defined as the barriers of surface science, the fields of materials science and applied physics are progressing as a unified discipline of scientific industry. A thin film can be termed as a very fine, or thin layer of material coated on a particular surface, that can be in the range of a nanometer in thickness to several micrometers in size. Thin films are applied in numerous areas ranging from protection purposes to electronic semiconductor devices. <p>The 16 chapters in this volume, all written by subject matter experts, demonstrate the claim that both photoenergy and thin film materials have the potential to be the future of industry. <p><b>Audience</b> <p>The book will appeal to material scientists, chemists, physicists and engineers working on applications in energy systems, surface science, thin films and coatings.

Diese Produkte könnten Sie auch interessieren:

Uncertainty in the Electric Power Industry
Uncertainty in the Electric Power Industry
von: Christoph Weber
PDF ebook
106,99 €
Applied Mathematics for Restructured Electric Power Systems
Applied Mathematics for Restructured Electric Power Systems
von: Joe H. Chow, Felix F. Wu, James A. Momoh
PDF ebook
149,79 €
Robust Control in Power Systems
Robust Control in Power Systems
von: Bikash Pal, Balarko Chaudhuri
PDF ebook
149,79 €