Details

Piping and Instrumentation Diagram Development


Piping and Instrumentation Diagram Development


1. Aufl.

von: Moe Toghraei

131,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 04.03.2019
ISBN/EAN: 9781119329831
Sprache: englisch
Anzahl Seiten: 496

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>An essential guide for developing and interpreting piping and instrumentation drawings</b></p> <p><i>Piping and Instrumentation Diagram Development</i> is an important resource that offers the fundamental information needed for designers of process plants as well as a guide for other interested professionals. The author offers a proven, systemic approach to present the concepts of P&ID development which previously were deemed to be graspable only during practicing and not through training. </p> <p>This comprehensive text offers the information needed in order to create P&ID for a variety of chemical industries such as: oil and gas industries; water and wastewater treatment industries; and food industries. The author outlines the basic development rules of piping and instrumentation diagram (P&ID) and describes in detail the three main components of a process plant: equipment and other process items, control system, and utility system. Each step of the way, the text explores the skills needed to excel at P&ID, includes a wealth of illustrative examples, and describes the most effective practices.</p> <p>This vital resource:</p> <ul> <li>Offers a comprehensive resource that outlines a step-by-step guide for developing piping and instrumentation diagrams</li> <li>Includes helpful learning objectives and problem sets that are based on real-life examples</li> <li>Provides a wide range of original engineering flow drawing (P&ID) samples</li> <li>Includes PDF’s that contain notes explaining the reason for each piece on a P&ID and additional samples to help the reader create their own P&IDs</li> </ul> <p>Written for chemical engineers, mechanical engineers and other technical practitioners, <i>Piping and Instrumentation Diagram Development </i>reveals the fundamental steps needed for creating accurate blueprints that are the key elements for the design, operation, and maintenance of process industries.</p>
<p>Preface xix</p> <p>Acknowledgement xxiii</p> <p>About the Companion Website xxv</p> <p><b>Part I Fundamentals of P&ID Development 1</b></p> <p><b>1 What Is P&ID 3</b></p> <p>1.1 Why Is P&ID Important? 3</p> <p>1.2 What Is a P&ID? 4</p> <p>1.3 P&ID Media 4</p> <p>1.4 P&ID Development Activity 5</p> <p><b>2 Management of P&ID Development 9</b></p> <p>2.1 Project of Developing P&IDs 9</p> <p>2.2 P&ID Milestones 9</p> <p>2.3 Involved Parties in P&ID Development 11</p> <p>2.4 P&ID Set Owner 12</p> <p>2.5 Required Quality of the P&ID in Each Stage of Development 12</p> <p>2.6 P&ID Evolution 12</p> <p>2.7 Tracking Changes in P&IDs 12</p> <p>2.8 Required Man‐Hours for the Development of P&IDs 13</p> <p><b>3 Anatomy of a P&ID Sheet 15</b></p> <p>3.1 Title Block 15</p> <p>3.2 Ownership Block 15</p> <p>3.3 Reference Drawing Block 15</p> <p>3.4 Revision Block 15</p> <p>3.5 Comments Block 16</p> <p>3.6 Main Body of a P&ID 19</p> <p><b>4 General Rules in Drawing of P&IDs 21</b></p> <p>4.1 Items on P&IDs 21</p> <p>4.1.1 Pipes or Other Flow Conductors 21</p> <p>4.1.2 Equipment 21</p> <p>4.1.3 Instruments 21</p> <p>4.1.4 Signals 22</p> <p>4.2 How to Show Them: Visual Rules 22</p> <p>4.2.1 Line Crossing Over 24</p> <p>4.2.2 Equipment Crossing 25</p> <p>4.2.3 Off‐Page Connector 26</p> <p>4.2.4 Color in P&IDs 26</p> <p>4.3 Item Identifiers in P&IDs 26</p> <p>4.3.1 Symbols 27</p> <p>4.3.2 Tags 28</p> <p>4.3.3 Name 29</p> <p>4.3.4 Technical Information 29</p> <p>4.4 Different Types of P&IDs 32</p> <p>4.4.1 Legend P&IDs 33</p> <p>4.4.2 System P&IDs 34</p> <p>4.4.3 Network P&IDs 34</p> <p>4.4.4 Interarea P&IDs 34</p> <p>4.4.5 Detail P&IDs 36</p> <p>4.5 A Set of P&IDs 39</p> <p>4.6 P&IDs Prepared in Engineering Companies Compared to Manufacturing or Fabricating Companies 42</p> <p>4.7 Dealing with Vendor or Licensor P&IDs 43</p> <p><b>5 Principles of P&ID Development 45</b></p> <p>5.1 Plant Stakeholders 45</p> <p>5.2 The Hierarchy of P&ID Development Rules 45</p> <p>5.3 Plant Operations 46</p> <p>5.3.1 Process Parameters 46</p> <p>5.3.2 Process Parameter Levels 47</p> <p>5.3.2.1 Pressure Levels 48</p> <p>5.3.2.2 Temperature Levels 49</p> <p>5.3.2.3 Liquid/Solid Levels 49</p> <p>5.3.2.4 Flow Levels 50</p> <p>5.3.2.5 Analyte Levels 50</p> <p>5.3.3 Parameter Levels versus Control System 50</p> <p>5.3.4 Parameter Levels versus Safety 51</p> <p>5.3.5 Parameter Levels versus Operator Role 52</p> <p>5.3.6 General Procedure of P&ID Development 53</p> <p>5.4 What Should a P&ID Address? 53</p> <p>5.4.1 Normal Operation 53</p> <p>5.4.2 Nonroutine Operation 53</p> <p>5.4.2.1 Reduced Capacity Operation 54</p> <p>5.4.3 Reduced Efficiency Operation 57</p> <p>5.4.4 Start‐Up Operations 58</p> <p>5.4.5 Shutdown 59</p> <p>5.4.6 Inspection and Maintenance 60</p> <p>5.4.6.1 Quantitative Approach to Maintenance Requirement 60</p> <p>5.4.6.2 Qualitative Approach to Maintenance Requirement 60</p> <p>5.4.7 Operability in Absence of One Item 61</p> <p>5.4.8 Provision for the Future 61</p> <p>5.5 Conflicting Check and Merging Opportunities Check 63</p> <p>5.5.1 Conflict Check 63</p> <p>5.5.2 Merging Opportunities Check 63</p> <p>5.6 Dealing with Common Challenges in P&ID Development 64</p> <p>5.7 Example: Development of P&ID of a Typical Pump 65</p> <p><b>Part II Pipes and Equipment 69</b></p> <p><b>6 Pipes 71</b></p> <p>6.1 Fluid Conductors: Pipes, Tubes, and Ducts 71</p> <p>6.2 Pipe Identifiers 71</p> <p>6.2.1 Pipe Symbol 71</p> <p>6.2.2 Pipe Tag 71</p> <p>6.2.2.1 Do All Pipes Need to be Tagged? 73</p> <p>6.2.2.2 Which Span of Pipe Route can be Considered One Piece of Pipe? 73</p> <p>6.2.2.3 How is the Pipe Tag Shown on a P&ID? 73</p> <p>6.2.3 Pipe Off‐Page Connector 74</p> <p>6.3 Pipe Tag Anatomy 74</p> <p>6.3.1 Area or Project Number 74</p> <p>6.3.2 Commodity Acronym 74</p> <p>6.3.3 Pipe Material Specification Code 74</p> <p>6.3.4 Pipe Size 77</p> <p>6.3.5 Pipe Sequential Number 78</p> <p>6.3.6 Other Pipe Tag Information 78</p> <p>6.4 Pipes Crossing “Borders” 79</p> <p>6.4.1 Implementing Spec Break 80</p> <p>6.4.2 Reasons for a Spec Break 82</p> <p>6.5 Goal of Piping 82</p> <p>6.5.1 Magnitude of Flow in Pipe 83</p> <p>6.5.2 Direction of Flow in Pipe 84</p> <p>6.5.3 Providing Fluid with Enough Pressure at the Inlet 84</p> <p>6.6 Piping Arrangements 84</p> <p>6.6.1 Backflow Prevention Systems 85</p> <p>6.6.2 Diversion of Flow 87</p> <p>6.6.3 Distribution of Flow 87</p> <p>6.7 Pipe Route 88</p> <p>6.7.1 Slope 88</p> <p>6.7.2 No Liquid Pocket 89</p> <p>6.7.3 No Gas Pocket 89</p> <p>6.7.4 Free Draining (Self‐Draining) 89</p> <p>6.7.5 Free Venting 90</p> <p>6.7.6 Gravity Flow 90</p> <p>6.7.7 Vertical or Horizontal Pipe 90</p> <p>6.7.8 Straight Piping 90</p> <p>6.7.9 Minimum or Maximum Length or Distance 90</p> <p>6.7.10 Other Special Pipe Routes 91</p> <p>6.8 Piping Movement 91</p> <p>6.9 Dealing with Unwanted Two‐Phase Flow in Pipes 92</p> <p>6.9.1 Liquid–Gas Two‐Phase Flow 92</p> <p>6.9.2 Gas–Liquid Two‐Phase Flow 94</p> <p>6.9.3 Solid–Liquid Two‐Phase Flow 94</p> <p>6.10 Tubes 94</p> <p>6.11 Double–Wall Pipes 95</p> <p>6.12 Pipes for Special Arrangements 96</p> <p>6.12.1 Piping for Bypassing 96</p> <p>6.12.2 Piping for Recirculation 96</p> <p>6.12.3 Piping for Units in Series 96</p> <p>6.12.4 Piping for Units in Parallel 97</p> <p>6.12.5 Piping for Pressure Equalization 97</p> <p>6.13 Pipe Size Rule of Thumbs 97</p> <p>6.14 Pipe Appurtenances 97</p> <p>6.14.1 Pipe Fittings 98</p> <p>6.14.1.1 Pipe Direction Change 98</p> <p>6.14.1.2 Reducers (Enlargers) 98</p> <p>6.14.1.3 Three‐Way Connections 100</p> <p>6.14.1.4 Pipe Connections 100</p> <p>6.14.1.5 End‐of‐Pipe Systems 100</p> <p>6.14.2 Specialty Items 102</p> <p>6.14.2.1 Flange‐Insulating Gasket 102</p> <p>6.15 Other Approach about Piping 103</p> <p>6.16 “Merging” Pipes 103</p> <p>6.17 Wrapping–Up: Addressing Requirements of Pipe during the Life Span 103</p> <p>6.18 Transferring Bulk Solid Materials 104</p> <p>Reference 104</p> <p><b>7 Manual Valves and Automatic Valves 105</b></p> <p>7.1 Valve Naming 105</p> <p>7.2 Valve Functions 105</p> <p>7.3 Valve Structure 105</p> <p>7.4 Classification of Valves 105</p> <p>7.4.1 Valve Plug: Throttling vs. Blocking Valves 106</p> <p>7.4.2 Valve Selection 108</p> <p>7.4.3 Multi‐port Valves 108</p> <p>7.4.4 Double‐Seated Valves 110</p> <p>7.5 Valve Operators 110</p> <p>7.6 Different Types of Actuators 111</p> <p>7.7 Basis of Operation for Automatic Valves 112</p> <p>7.8 Tagging Automatic Valves 113</p> <p>7.9 Tagging Manual Valves 113</p> <p>7.10 Valve Positions 113</p> <p>7.10.1 Regular Position of Blocking Valves and Decision Methodology 113</p> <p>7.10.2 Failure Position of Automatic Valves and Decision Methodology 114</p> <p>7.10.3 More Concepts about Failure Position of Automatic Valves 115</p> <p>7.11 Valve Arrangement 117</p> <p>7.11.1 Valves in Series 118</p> <p>7.11.2 Valves in Parallel 118</p> <p>7.12 Control Valves and RO Combinations 119</p> <p>7.13 Operating in the Absence of Valves 119</p> <p>7.13.1 Operating in the Absence of Control Valves 119</p> <p>7.13.2 Operating in the Absence of Switching Valves 122</p> <p>7.14 Valves in Role of Unit Operation 122</p> <p>7.15 Special Valves 123</p> <p>7.15.1 Check Valves 123</p> <p>7.15.2 Regulators 124</p> <p>7.15.3 Safety‐Related Valves 125</p> <p>7.16 Valve Combinations 126</p> <p>7.17 End of Valve Arrangements 126</p> <p>7.18 Valve Sizing Rule of Thumbs 127</p> <p>7.19 Merging Valves 127</p> <p>7.20 Wrapping Up: Addressing Requirements of Valve During the Life Span 127</p> <p>References 128</p> <p><b>8 Provisions for Ease of Maintenance 129</b></p> <p>8.1 Introduction 129</p> <p>8.2 Different Types of Equipment Care 129</p> <p>8.3 In‐place In‐line Equipment Care 129</p> <p>8.4 In‐place Off‐line Equipment Care 130</p> <p>8.5 In‐workshop Off‐line Equipment Care 131</p> <p>8.6 Preparing Equipment for Off‐line Care 131</p> <p>8.7 Isolation 131</p> <p>8.7.1 Requirement of an Isolation System 131</p> <p>8.7.2 Type of Isolation System 132</p> <p>8.7.3 Placement of an Isolation System 135</p> <p>8.7.4 Inbound Versus Outbound Blind Location 135</p> <p>8.7.5 Merging Isolation Valves 135</p> <p>8.8 Bringing the Equipment to a Non‐harmful Condition 136</p> <p>8.8.1 Cooling Down 136</p> <p>8.8.2 Emptying and Then Draining/Venting 136</p> <p>8.8.2.1 Location and Number of Drain/Vent Valves 137</p> <p>8.8.2.2 Size of Drain/Vent Valves 138</p> <p>8.8.2.3 Other Usages of Drain/Vent Valves 138</p> <p>8.9 Cleaning 139</p> <p>8.9.1 Solid/Semi‐Solid Removal Methods 139</p> <p>8.9.2 Washing Systems 139</p> <p>8.9.3 Purging Methods 140</p> <p>8.10 Ultimate Destination of Dirty Fluids 140</p> <p>8.11 Making Equipment Easy to Remove 141</p> <p>8.12 Wrap‐up 142</p> <p><b>9 Containers 143</b></p> <p>9.1 Introduction 143</p> <p>9.2 Selection of Containers 143</p> <p>9.3 Containers Purposes 144</p> <p>9.4 Transferring Fluids Between Containers 145</p> <p>9.5 Container Positions 146</p> <p>9.6 Container Shapes 147</p> <p>9.6.1 Closing Parts of Containers 148</p> <p>9.6.2 Open Top or Fully Enclosed Containers 148</p> <p>9.7 Container Identifiers 148</p> <p>9.7.1 Container Symbol 148</p> <p>9.7.2 Container Tags 149</p> <p>9.7.3 Container Call‐outs 149</p> <p>9.7.3.1 Tank Call‐outs 149</p> <p>9.7.3.2 Vessel Call‐outs 150</p> <p>9.7.3.3 Tag of Container in Duty of Conversion 151</p> <p>9.8 Levels in Non‐flooded Liquid Containers 151</p> <p>9.9 Container Nozzles 151</p> <p>9.9.1 Nozzle Duties 151</p> <p>9.9.2 Nozzle Locations 152</p> <p>9.9.3 Nozzle Elevation Versus Liquid Levels 153</p> <p>9.9.4 The Size, Number, and Rating of Nozzles 155</p> <p>9.9.5 Merging Nozzles 155</p> <p>9.9.6 Nozzle Internal Assemblies 156</p> <p>9.9.7 Nozzle Externals 157</p> <p>9.10 Overflow Nozzles 157</p> <p>9.11 Breathing of Non‐flooded Containers 158</p> <p>9.12 Blanketed Tanks 160</p> <p>9.13 Heating (or Cooling) in Containers 161</p> <p>9.14 Mixing in Containers 162</p> <p>9.15 Container Internals 162</p> <p>9.16 Tank Roofs 162</p> <p>9.17 Tank Floors 163</p> <p>9.18 Container Arrangement 164</p> <p>9.19 Merging Containers 164</p> <p>9.20 Secondary Containment 165</p> <p>9.21 Underground Storage Tanks 166</p> <p>9.22 Sumps 167</p> <p>9.23 Wrapping‐up: Addressing the Requirements of the Container During its Lifespan 167</p> <p><b>10 Pumps and Compressors 169</b></p> <p>10.1 Introduction 169</p> <p>10.2 Fluid Mover Roles 169</p> <p>10.3 Types of Fluid Movers 169</p> <p>10.4 A Brief Discussion on the Function of Fluid Movers in a System 169</p> <p>10.5 Fluid Mover Identifiers 171</p> <p>10.5.1 Fluid Mover Symbol 171</p> <p>10.5.2 Fluid Mover Tag 171</p> <p>10.5.3 Fluid Mover Call‐out 173</p> <p>10.6 Liquid Movers: Dynamic Pumps 173</p> <p>10.6.1 Centrifugal Pumps 173</p> <p>10.6.1.1 P&ID Development on the Suction Side 174</p> <p>10.6.1.2 P&ID Development on the Discharge Side 175</p> <p>10.6.2 Low Flow Intolerance and Minimum Flow Protection System 176</p> <p>10.6.2.1 Which Pumps May Need a Minimum Flow Pipe 176</p> <p>10.6.2.2 Where Should we Position the Recirculation Line? 177</p> <p>10.6.2.3 Where Should the Destination Point of the Recirculation Pipe Be? 177</p> <p>10.6.2.4 What Should the Size of the Recirculation Pipe Be? 178</p> <p>10.6.2.5 What Should the Arrangement on the Recirculation Pipe Be? 178</p> <p>10.6.3 Cavitation 180</p> <p>10.6.4 Very Small Centrifugal Pumps 181</p> <p>10.6.5 Different Types of Spare Pump 182</p> <p>10.6.6 Centrifugal Pump Arrangements 182</p> <p>10.6.6.1 Centrifugal Pumps in Parallel 183</p> <p>10.6.6.2 Centrifugal Pumps in Series 184</p> <p>10.6.7 Pump Warm‐up or Cool‐down System 185</p> <p>10.6.8 Piping Spec. for Centrifugal Pumps 187</p> <p>10.6.9 Centrifugal Pump Drives 187</p> <p>10.6.10 (Liquid) Seal Systems in Centrifugal Pumps 187</p> <p>10.6.11 Merging Pumps 189</p> <p>10.7 Liquid Movers: PD Pumps 190</p> <p>10.7.1 PD Pump P&ID Piping 191</p> <p>10.7.1.1 Reciprocating Pumps P&ID Piping 191</p> <p>10.7.1.2 Rotary Pumps P&ID Piping 192</p> <p>10.7.2 PD Pump Arrangements 193</p> <p>10.7.3 Merging PD Pumps 193</p> <p>10.7.4 Tying Together Dissimilar Pumps 193</p> <p>10.7.5 PD Pump Drives 193</p> <p>10.7.6 Sealing Systems for PD Pumps 194</p> <p>10.7.7 Metering Pumps (Dosing Pumps) 194</p> <p>10.7.8 Liquid Transfer – Summary 195</p> <p>10.7.9 Pumps: Duty Other than Pumping! 195</p> <p>10.8 Gas Movers: Fans, Blowers, Compressors 196</p> <p>10.8.1 Low Flow Intolerance and Anti‐Surge Systems 196</p> <p>10.8.2 P&ID Development of Gas Movers 197</p> <p>10.8.3 Gas Mover Drives 198</p> <p>10.8.4 Auxiliary Systems Around Fluid Movers 198</p> <p>10.8.5 Gas Transfer – Summary 199</p> <p>10.9 Wrapping‐up: Addressing Requirements of Fluid Movers During the Life Span 200</p> <p>Reference 200</p> <p><b>11 Heat Transfer Units 201</b></p> <p>11.1 Introduction 201</p> <p>11.2 Main Types of Heat Transfer Units 201</p> <p>11.3 Different Types of Heat Exchangers and Their Selection 202</p> <p>11.4 Different Types of Heat Transfer Fluids and Their Selection 203</p> <p>11.5 Heat Exchangers: General Naming 204</p> <p>11.6 Heat Exchanger Identifiers 204</p> <p>11.6.1 Heat Exchanger Symbol 204</p> <p>11.6.2 Heat Exchanger Tag 204</p> <p>11.6.3 Heat Exchanger Call‐Out 205</p> <p>11.7 Heat Exchanger P&ID 206</p> <p>11.7.1 Vents and Drains 206</p> <p>11.7.2 Isolation Valves 207</p> <p>11.7.3 Chemical Cleaning Valves 207</p> <p>11.7.4 PSDs 207</p> <p>11.8 Heat Exchanger Arrangement 207</p> <p>11.8.1 Heat Exchangers in Series 207</p> <p>11.8.2 Heat Exchangers in Parallel 209</p> <p>11.9 Aerial Coolers 209</p> <p>11.9.1 Aerial Cooler P&ID 210</p> <p>11.9.2 Dealing with Extreme Temperatures 211</p> <p>11.9.3 Aerial Cooler Arrangement 211</p> <p>11.10 Merging Heat Exchangers 212</p> <p>11.11 Wrapping‐up: Addressing the Requirements of a Heat Exchanger During its Life Span 212</p> <p>11.12 Fired Heaters and Furnaces 213</p> <p>11.12.1 Process Fluid Side 213</p> <p>11.12.2 Flue Gas Side 213</p> <p>11.12.3 Firing Side 214</p> <p>11.13 Fire Heater Arrangement 215</p> <p>11.14 Merging Fired Heaters 216</p> <p>11.15 Wrapping‐up: Addressing the Requirements of Fired Heaters During their Lifespan 216</p> <p><b>12 Pressure Relief Devices 217</b></p> <p>12.1 Introduction 217</p> <p>12.2 Why Pressure Is So Important? 217</p> <p>12.3 Dealing with Abnormal Pressures 217</p> <p>12.3.1 Active Versus Passive Solutions 219</p> <p>12.3.2 Where Could Passive Solutions Be Used? 219</p> <p>12.3.3 Where Should Active Solutions Be Used? 219</p> <p>12.4 Safety Relief System 219</p> <p>12.5 What Is an “Enclosure,” and Which “Side” Should Be Protected? 220</p> <p>12.6 Regulatory Issues Involved in PRVs 220</p> <p>12.6.1 Codes Versus Standards 221</p> <p>12.7 PRD Structure 222</p> <p>12.8 Six Steps to Providing a Protective Layer 222</p> <p>12.9 Locating PRDs 223</p> <p>12.10 Positioning PRDs 223</p> <p>12.11 Specifying the PRD 225</p> <p>12.12 Selecting the Right Type of PRD 225</p> <p>12.12.1 Pressure Relief Valve Type 225</p> <p>12.12.2 Rupture Disks 226</p> <p>12.12.3 Decision General Rules 226</p> <p>12.13 PRD Identifiers 226</p> <p>12.13.1 PRD Symbols and Tags 226</p> <p>12.13.2 PRD Technical Information 227</p> <p>12.14 Selecting the Right Type of PRD Arrangement 228</p> <p>12.15 Deciding on an Emergency Release Collecting Network 230</p> <p>12.16 Deciding on a Disposal System 232</p> <p>12.16.1 Liquid Disposal 232</p> <p>12.16.2 Gas/Vapor Disposal 233</p> <p>12.16.3 Two‐Phase Flow Handling 234</p> <p>12.17 Protecting Atmospheric Containers 235</p> <p>12.18 Merging PRDs 236</p> <p>12.19 Wrapping‐Up: Addressing the Requirements of PRDs During their Lifespan 238</p> <p><b>Part III Instrumentation and Control System 239</b></p> <p><b>13 Fundamentals of Instrumentation and Control 241</b></p> <p>13.1 What Is Process Control? 241</p> <p>13.2 Components of Process Control Against Violating Parameters 241</p> <p>13.3 Parameters Versus Steering/Protecting Components 242</p> <p>13.4 How Many Steering Loops Are Needed? 242</p> <p>13.5 ICSS System Technology 243</p> <p>13.5.1 Use of PLC for a BPCS 243</p> <p>13.5.2 Use of DCS for a SIS 244</p> <p>13.5.3 Alarm Systems 244</p> <p>13.5.4 ICSS System Symbology 244</p> <p>13.6 ICSS Elements 245</p> <p>13.7 Basic Process Control System (BPCS) 245</p> <p>13.8 Instruments on P&IDs 247</p> <p>13.8.1 Fundamental Terminology 247</p> <p>13.8.2 Identifiers for Equipment and Instrumentation 247</p> <p>13.9 Instrument Identifiers 248</p> <p>13.9.1 Acronyms 248</p> <p>13.9.2 Divider Types 249</p> <p>13.9.3 Symbol Type 250</p> <p>13.9.4 Additional Information and Tag Number 252</p> <p>13.10 Signals: Communication Between Instruments 252</p> <p>13.10.1 Signal Types 253</p> <p>13.10.2 Signal Functions 253</p> <p>13.10.3 Signal Math Functions 254</p> <p>13.10.4 Signal Selectors 254</p> <p>13.11 Different Instrument Elements 255</p> <p>13.11.1 Primary Instruments 255</p> <p>13.11.1.1 Temperature Measurement 256</p> <p>13.11.1.2 Pressure Measurement 257</p> <p>13.11.1.3 Level Measurement 258</p> <p>13.11.1.4 Flow Measurement 258</p> <p>13.11.1.5 Process Analyzers 260</p> <p>13.11.2 Transmitters 262</p> <p>13.11.3 Controllers 263</p> <p>13.11.4 Indicators 263</p> <p>13.11.5 Final Control Elements in a BPCS 263</p> <p>13.11.5.1 Control Valves 264</p> <p>13.11.5.2 Variable Speed Devices on Electric Motors 264</p> <p>13.12 Simple Control Loops 264</p> <p>13.12.1 Level Control Loops 265</p> <p>13.12.2 Pressure Control Loops 265</p> <p>13.12.3 Temperature Control Loops 265</p> <p>13.12.4 Composition Control Loops 266</p> <p>13.12.5 Flow Control Loops 266</p> <p>13.13 Position of Sensor Regarding Control Valves 266</p> <p><b>14 Application of Control Architectures 269</b></p> <p>14.1 Introduction 269</p> <p>14.2 Control System Design 269</p> <p>14.3 Selecting the Parameter to Control 269</p> <p>14.4 Identifying the Manipulated Stream 270</p> <p>14.5 Determining the Set Point 271</p> <p>14.6 Building a Control Loop 272</p> <p>14.6.1 Feedback Versus Feedforward 272</p> <p>14.6.2 Single‐ versus Multiple‐Loop Control 273</p> <p>14.7 Multi‐Loop Control Architectures 274</p> <p>14.7.1 Cascade Control 274</p> <p>14.8 Feedforward Plus Feedback Control 276</p> <p>14.8.1 Ratio or Relationship Control 279</p> <p>14.8.2 Selective Control 280</p> <p>14.8.3 Override and Limit Control 281</p> <p>14.8.3.1 Override Control 283</p> <p>14.8.3.2 Limit Control 286</p> <p>14.8.4 Split Range and Parallel Control 286</p> <p>14.8.5 Clarification of Confusion 288</p> <p>14.8.5.1 Cascade Versus Ratio 288</p> <p>14.8.5.2 Single Loop Versus Ratio 288</p> <p>14.8.5.3 Selective Versus Override 288</p> <p>14.9 Monitoring Parameters 289</p> <p>14.9.1 Container Sensors 290</p> <p>14.9.2 Fluid Mover Sensors 290</p> <p>14.9.3 Heat Exchanger Sensors 291</p> <p>14.9.4 Fired Heater Sensors 291</p> <p><b>15 Plant Process Control 293</b></p> <p>15.1 Introduction 293</p> <p>15.2 Plant‐Wide Control 293</p> <p>15.3 Heat and Mass Balance Control 293</p> <p>15.4 Surge Control 295</p> <p>15.4.1 Disturbances in Process Parameters 295</p> <p>15.4.2 Disturbance Management 296</p> <p>15.4.2.1 Absorption 296</p> <p>15.4.2.2 Rejection 296</p> <p>15.4.3 Disturbance Versus Fluid Phase 296</p> <p>15.4.4 Dampening Gas/Vapor Flow Surge 297</p> <p>15.4.5 Dampening Liquid Flow Surge 298</p> <p>15.4.6 The Purpose of Containers in Process Plants 301</p> <p>15.5 Equipment Control 302</p> <p>15.5.1 Do We Need to Control at All? 302</p> <p>15.5.2 Principles of Equipment‐wise Control 302</p> <p>15.6 Pipe Control System 304</p> <p>15.6.1 Control of a Single Pipe 304</p> <p>15.6.1.1 Control of Pressure in a Pipe 304</p> <p>15.6.1.2 Control of Flow in a Pipe 304</p> <p>15.6.2 Controlling Multiple Pipes 306</p> <p>15.6.2.1 Flow Merging 306</p> <p>15.6.2.2 Flow Splitting 308</p> <p>15.7 Fluid Mover Control System 309</p> <p>15.7.1 Pump Control Systems 310</p> <p>15.7.1.1 Centrifugal Pump Control 310</p> <p>15.7.1.2 Positive Displacement (PD) Pump 314</p> <p>15.7.2 Gas Mover Control Systems 316</p> <p>15.7.2.1 Capacity Control Methods for Gas Movers 316</p> <p>15.7.3 Anti‐Surge Control 319</p> <p>15.7.4 Lead–Lag Operation of Fluid‐Movers 319</p> <p>15.8 Heat Transfer Equipment Control 320</p> <p>15.8.1 Heat Exchanger Control System 320</p> <p>15.8.1.1 Direct Control System 320</p> <p>15.8.1.2 Bypass Control System 321</p> <p>15.8.1.3 Control of Heat Exchangers Experiencing Phase Change 324</p> <p>15.8.2 Air Cooler Control 327</p> <p>15.8.3 Heat Exchanger for Heat Recovery 327</p> <p>15.8.4 Back Pressure Control of Heat Exchangers 328</p> <p>15.8.5 Fired Heater Control 328</p> <p>15.9 Container Control System 331</p> <p>15.10 Blanket Gas Control Systems 332</p> <p>Reference 332</p> <p><b>16 Plant Interlocks and Alarms 333</b></p> <p>16.1 Introduction 333</p> <p>16.2 Safety Strategies 333</p> <p>16.3 Concept of a SIS 333</p> <p>16.4 SIS Actions and SIS Types 333</p> <p>16.5 SIS Extent 336</p> <p>16.6 Deciding on the Required SIS 336</p> <p>16.7 The Anatomy of a SIS 336</p> <p>16.7.1 SIS Element Symbols 336</p> <p>16.7.1.1 SIS Primary Elements: Sensors 337</p> <p>16.7.2 SIS Final Elements 337</p> <p>16.7.2.1 Switching Valves 337</p> <p>16.7.2.2 Switching Valve Actuator Arrangements 338</p> <p>16.7.2.3 Valve Position Validation 338</p> <p>16.7.2.4 Merging a Switching Valve and a Control Valve 338</p> <p>16.7.2.5 On/off Action of Electric Motors 339</p> <p>16.7.3 SIS Logic 339</p> <p>16.8 Showing Safety Instrumented Functions on P&IDs 340</p> <p>16.9 Discrete Control 343</p> <p>16.10 Alarm System 344</p> <p>16.10.1 Anatomy of Alarm Systems 345</p> <p>16.10.2 Alarm Requirements 345</p> <p>16.10.3 Alarm System Symbology 346</p> <p>16.10.4 Concept of “Common Alarm” 347</p> <p>16.11 Fire and Gas Detection System (FGS) 347</p> <p>16.11.1 Manual Alarm 350</p> <p>16.12 Electric Motor Control 351</p> <p>16.12.1 Simple Motor Control 351</p> <p>16.12.2 The Focal Element of Motor Control: mcc 351</p> <p>16.12.3 All About Relationships with Electric Motors 351</p> <p>16.12.4 P&ID Representation of Commands and Responses 352</p> <p>16.12.5 P&ID Representation of Principal Arrangement for Inspection and Repair 353</p> <p>16.12.6 Examples 355</p> <p><b>Part IV Utilities 357</b></p> <p><b>17 Utilities 359</b></p> <p>17.1 Utility System Components 359</p> <p>17.2 Developing P&IDs for Utility Systems 359</p> <p>17.2.1 Identifying the Utility Users 359</p> <p>17.2.2 Utility Distribution and Collection Network Topologies 359</p> <p>17.2.3 Designing the Detail of a Utility Network 361</p> <p>17.2.4 Placing Priority on Utility Users 362</p> <p>17.2.5 Connection Details of Utility to Process 363</p> <p>17.3 Different Utilities in Plants 363</p> <p>17.4 Air as a Utility in Process Plants 363</p> <p>17.4.1 Instrument Air (IA) 363</p> <p>17.4.2 Utility Air (UA) or Plant Air (PA) 364</p> <p>17.5 Water as a Utility in Process Plants 364</p> <p>17.5.1 Utility Water (UW) or Plant Water (PW) 364</p> <p>17.5.2 Potable Water 364</p> <p>17.6 Heat Transfer Media 364</p> <p>17.6.1 Steam 365</p> <p>17.7 Condensate Collection Network 366</p> <p>17.8 Fuel as Utility 366</p> <p>17.8.1 Fuel Oil 366</p> <p>17.8.2 Fuel Gas 366</p> <p>17.9 Inert Gas 367</p> <p>17.9.1 Blanket Gas 367</p> <p>17.9.2 Purging Gas 367</p> <p>17.10 Vapor Collection Network 367</p> <p>17.11 Emergency Vapor/Gas Release Collection Network 368</p> <p>17.12 Fire Water 368</p> <p>17.13 Surface Drainage Collection Network or Sewer System 370</p> <p>17.14 Utility Circuits 372</p> <p>17.14.1 Air Circuit 372</p> <p>17.14.2 Steam–Condensate Circuit 374</p> <p>17.14.3 Cooling Water Circuit 375</p> <p>17.14.4 Natural Gas Preparation System 375</p> <p>17.15 Connection Between Distribution and Collecting Networks 375</p> <p><b>Part V Additional Information and General Procedure 379</b></p> <p><b>18 Ancillary Systems and Additional Considerations 381</b></p> <p>18.1 Introduction 381</p> <p>18.2 Safety Issues 381</p> <p>18.2.1 Different Types of Hazards 381</p> <p>18.2.2 Hazards and Injuries 381</p> <p>18.2.3 Mechanical Hazards 381</p> <p>18.2.4 Chemical Hazards 382</p> <p>18.2.5 Energy Hazards 382</p> <p>18.2.5.1 Noise Barrier 382</p> <p>18.2.5.2 Burning Prevention 382</p> <p>18.2.6 Safety Showers and Eye Washers 383</p> <p>18.3 Dealing with Environment 384</p> <p>18.3.1 Arrangements for Maintaining the Temperature of the Process 384</p> <p>18.3.2 Winterization 385</p> <p>18.3.3 Deciding on the Extent of Insulation 389</p> <p>18.3.4 Summary of Insulation 390</p> <p>18.4 Utility Stations 390</p> <p>18.5 Off‐Line Monitoring Programs 392</p> <p>18.5.1 The Program Component 392</p> <p>18.5.2 Sampling System 393</p> <p>18.5.3 Sample Extraction Device 393</p> <p>18.5.4 Sample Transferring Tube 394</p> <p>18.5.5 Sample Conditioning System 394</p> <p>18.5.6 Sample Hand‐Over System 395</p> <p>18.5.7 Waste Sample Collection System 395</p> <p>18.5.8 Sampling Station Structural Frame 395</p> <p>18.5.9 Showing a Sampling System on P&IDs 396</p> <p>18.5.10 Sampling System for Process Analyzers 396</p> <p>18.6 Corrosion Monitoring Program 396</p> <p>18.7 Impact of the Plant Model on the P&ID 397</p> <p>18.8 Design Pressure and Temperature Considerations 398</p> <p>18.8.1 Decision on “Design Pressure @ Design Temperature” Pair 399</p> <p>18.8.1.1 Deciding on “Design Pressure” 399</p> <p>18.8.1.2 Deciding on “Design Temperature” 399</p> <p>18.8.2 Sources of Rebel Pressures 400</p> <p>18.8.3 Sources of Rebel Temperatures 400</p> <p>18.8.4 Design Pressure and Design Temperature of Single Process Elements 400</p> <p>18.8.5 Design Pressure of Connected Items 401</p> <p>18.8.5.1 Design Pressure of Connected Equipment–Equipment 402</p> <p>18.8.5.2 Design Pressure of Connected Equipment–Sensor 403</p> <p><b>19 General Procedures 405</b></p> <p>19.1 Introduction 405</p> <p>19.2 General Procedure for P&ID Development 405</p> <p>19.2.1 P&ID Development: Piping and Equipment 405</p> <p>19.2.2 P&ID Development: Control and Instruments 406</p> <p>19.3 P&ID Reviewing and Checking 409</p> <p>19.3.1 Format Check 409</p> <p>19.3.2 Demonstration Rules Check 410</p> <p>19.3.3 Technical Check 410</p> <p>19.3.4 Design Check 412</p> <p>19.4 Methods of P&ID Reviewing and Checking 412</p> <p>19.4.1 Systematic Approach 412</p> <p>19.4.2 Scanning Approach 412</p> <p>19.5 Required Quality of P&IDs at Each Stage of Development 413</p> <p><b>20 Examples 417</b></p> <p>Index 453</p>
<p><b>MOE TOGHRAEI</b> is an independent consultant and instructor. He has more than 20 years of experience in the chemical process industries. He provides consultancy in process and project engineering areas. He also has developed and instructed dozens of technical courses, including tailor-made courses for companies, public courses and online courses. His online courses are available through the University of Kansas and University of Dalhousie.
<p><b>AN ESSENTIAL GUIDE FOR DEVELOPING AND INTERPRETING PIPING AND INSTRUMENTATION DRAWINGS</b> <p><i>Piping and Instrumentation Diagram Development</i> is an important resource that offers the fundamental information needed for designers of process plants as well as a guide for other interested professionals. The author offers a proven, systemic approach to present the concepts of P&ID development which previously were deemed to be graspable only during practicing and not through training. <p>This comprehensive text offers the information needed in order to create P&ID for a variety of chemical industries such as: oil and gas industries; water and wastewater treatment industries; and food industries. The author outlines the basic development rules of piping and instrumentation diagram (P&ID) and describes in detail the three main components of a process plant: equipment and other process items, control system, and utility system. Each step of the way, the text explores the skills needed to excel at P&ID, includes a wealth of illustrative examples, and describes the most effective practices. <p><b>This vital resource:</b> <ul> <li>Offers a comprehensive resource that outlines a step-by-step guide for developing piping and instrumentation diagrams</li> <li>Includes problem sets that are based on real-life examples</li> <li>Provides a wide range of original engineering flow drawing (P&ID) samples</li> </ul> <p>Written for chemical engineers, mechanical engineers and other technical practitioners, <i>Piping and Instrumentation Diagram Development</i> reveals the fundamental steps needed for creating accurate blueprints that are the key elements for the design, operation, and maintenance of process industries.

Diese Produkte könnten Sie auch interessieren:

Chemistry for the Protection of the Environment 4
Chemistry for the Protection of the Environment 4
von: Robert Mournighan, Marzenna R. Dudzinska, John Barich, Marjorie A. Gonzalez, Robin K. Black
PDF ebook
213,99 €
Wörterbuch Labor / Laboratory Dictionary
Wörterbuch Labor / Laboratory Dictionary
von: Klaus Roth, Theodor C.H. Cole
PDF ebook
36,99 €