Title

Contents

Members of the Working Group for Excavations

Preface

Notes for the User

1 Introduction

1.1 Engineering prerequisites for applying the Recommendations (R l)

1.2 Governing regulations (R 76)

1.3 Safety factor approach (R 77)

1.4 Limit states (R 78)

1.5 Support of retaining walls (R 67)

1.6 Planning and examination of excavations (R 106)

2 Analysis principles

2.1 Actions (R 24)

2.2 Determination of soil properties (R 2)

2.3 Earth pressure angle (R 89)

2.4 Partial safety factors (R 79)

2.5 General requirements for adopting live loads (R 3)

2.6 Live loads from road and rail traffic (R 55).

2.7 Live loads from site traffic and site operations (R 56).

2.8 Live loads from excavators and lifting equipment (R 57)

3 Magnitude and distribution of earth pressure

3.1 Magnitude of earth pressure as a function of the selected construction method (R 8).

3.2 Magnitude of total active earth pressure lead without surcharge loads (R 4)

3.3 Distribution of active earth pressure without surcharges (R 5) .

3.4 Magnitude of total active earth pressure lead from live loads (R 6)

3.5 Distribution of active earth pressure from live loads (R 7)

3.6 Superimposing earth pressure components with surcharges (R 71)

3.7 Determination of at-rest earth pressure (R 18)

3.8 Earth pressure in retreating states (R 68)

4 General stipulations for analysis

4.1 Stability analysis (R 81)

4.2 General information on analysis methods (R 11)

4.3 Determination and analysis of embedment depth (R 80).

4.4 Determination of action effects (R 82).

4.5 Modulus of subgrade reaction method (R 102).

4.6 Finite-element method (R 103)

4.7 Analysis of the vertical component of the mobilised passive earth pressure (R 9)

4.8 Analysis of the transfer of vertical forces into the subsurface (R 84)

4.9 Stability analyses for braced excavations in special cases (R 10)

4.10 Serviceability analysis (R 83)

4.11 Allowable simplifications in limit states GEO 2 or STR (R 104).

5 Analysis approaches for soldier pile walls

5.1 Determination of load models for soldier pile walls (R 12)

5.2 Pressure diagrams for supported soldier pile walls (R 69).

5.3 Soil reactions and passive earth pressure for soldier pile walls with free earth supports (R 14)

5.4 Fixed earth support for soldier pile walls (R 25).

5.5 Equilibrium of horizontal forces for soldier pile walls (R 15)

6 Analysis approaches for sheet pile wallsand in-situ concrete walls

6.1 Determination of load models for sheet pile walls and in-situ concrete walls (R 16).

6.2 Pressure diagrams for supported sheet pile walls and in-situ concrete walls (R 70).

6.3 Ground reactions and passive earth pressure for sheet pile walls and in-situ concrete walls with free earth support (R 19).

6.4 Fixed earth support for sheet pile walls and in-situ concrete walls (R 26)

7 Anchored retaining walls

7.1 Magnitude and distribution of earth pressure for anchored retaining walls (R 42)

7.2 Analysis of force transfer from anchors to the ground (R 43)

7.3 Verification of stability at the lower failure plane (R 44).

7.4 Analysis of overall stability (R 45)

7.5 Measures to counteract deflections in anchored retaining walls (R 46)

8 Excavations with special ground plans.

8.1 Excavations with circular plan (R 73)

8.2 Excavations with oval plan (R 74)

8.3 Excavations with rectangular plan (R 75)

9 Excavations adjacent to structures

9.1 Engineering measures for excavations adjacent to structures (R 20)

9.2 Analysis of retaining walls with active earth pressure for excavations adjacent to structures (R 21)

9.3 Active earth pressure for large distances to structures (R 28)

9.4 Active earth pressure for small distances to structures (R 29)

9.5 Analysis of retaining walls with increased active earth pressure (R 22)

9.6 Analysis of retaining walls with at-rest earth pressure (R 23)

9.7 Mutual influence of opposing retaining walls for excavations adjacent to structures (R 30)

10 Excavations in water

10.1 General remarks on excavations in water (R 58).

10.2 Flow forces (R 59)

10.3 Dewatered excavations (R 60)

10.4 Analysis of hydraulic heave safety (R 61)

10.5 Analysis of buoyancy safety (R 62)

10.6 Stability analysis of retaining walls in water (R 63)

10.7 Design and construction of excavations in water (R 64)

10.8 Water management (R 65)

10.9 Monitoring excavations in water (R 66).

11 Excavations in unstable rock mass

11.1 General recommendations for excavation in unstable rock mass (R 38)

11.2 Magnitude of rock mass pressure (R 39).

11.3 Distribution of rock pressure (R 40)

11.4 Bearing capacity of rock mass for support forces at the embedment depth (R 41)

12: Excavations in soft soils

12.1 Scope of Recommendations R 91 to R 101 (R 90)

12.2 Slopes in soft soils (R 91)

12.3 Wall types in soft soils (R 92)

12.4 Construction procedure in soft soils (R 93)

12.5 Shear strength of soft soils (R 94)

12.6 Earth pressure on retaining walls in soft soils (R 95)

12.7 Ground reactions for retaining walls in soft soils (R 96)

12.8 Water pressure in soft soils (R 97)

12.9 Determination of embedment depths and action effects for excavations in soft soils (R 98)

12.10 Additional stability analyses for excavations in soft soils (R 99)

12.11 Water management for excavations in soft soils (R 100).

12.12 Serviceability of excavation structures in soft soils (R 101)

13 Analysis of the bearing capacity of structural elements

13.1 Material parameters and partial safety factors for structural element resistances (R 88).

13.2 Bearing capacity of soldier pile infilling (R 47)

13.3 Bearing capacity of soldier piles (R 48).

13.4 Bearing capacity of sheet piles (R 49)

13.5 Bearing capacity of in-situ concrete walls (R 50).

13.6 Bearing capacity of waling (R 51)

13.7 Bearing capacity of struts (R 52).

13.8 Bearing capacity of trench lining (R 53).

13.9 Bearing capacity of provisional bridges and excavation covers (R 54)

13.10 External bearing capacity of soldier piles, sheet pile walls and in-situ concrete walls (R 85).

13.11 Bearing capacity of tension piles and ground anchors (R 86)

14 Measurements and monitoring on excavation structures

14.1 Purpose of measurements and monitoring (R 31).

14.2 Measurands and measuring methods (R 32)

14.3 Measurement planning (R 33)

14.4 Location of measuring points (R 34)

14.5 Carrying out measurements and forwarding measurement results (R 35)

14.6 Evaluation and documentation of measurement results (R 36)

Annex

A 1: Relative density of cohesionless soils

A 2: Consistency of cohesive soils

A 3: Soil properties of cohesionless soils.

A 4: Soil properties of cohesive soils

A 5: Geotechnical categories of excavations

A 6: Partial safety factors for geotechnical variables

A 7: Material properties and partial safety factors for concrete and reinforced concrete structural elements.

A 8: Material properties and partial safety factors for steel structural elements

A 9: Material properties and partial safety factors for wooden structural elements.

A 10: Empirical values for skin friction and base resistance of sheet pile walls

Bibliography

Terms and notation

Recommendations in numerical order

Annex

A 1: Relative density of cohesionless soils

Based on DIN 1054 ‘Verification of the Safety of Earthworks and Foundations’.

Table 1.1. Definition of relative density

bapp01-3

Table 1.2. Criteria for medium-dense compaction

bapp01-1

Table 1.3. Criteria for dense compaction

bapp01-2

A 2: Consistency of cohesive soils

Definitions

The consistency depends on the water content w of the soil (see DIN 18121-1). With decreasing water content, cohesive soil changes its state from liquid to plastic to semisolid to solid (hard). Transitions from one state to another were defined by Atterberg and are known as consistency limits:

a) The liquid limit bapp01-4 is the water content at the transition from liquid to plastic state.
b) The plastic limit bapp01-5 is the water content at the transition from plastic to semi-solid.
c) The shrinkage limit bapp01-6 is the water content at the transition from the semi-solid to the solid (hard) state.
d) The plasticity index bapp01-7 is the difference between liquid and plastic limit: bapp01-8
e) The plastic range between the liquid and the plastic limit is sub-categorised into very soft, soft, and firm states.

Determination of consistency in laboratory tests

Based on the water content at the liquid limit bapp01-9 and at the plastic limit bapp01-10 the consistency index is computed using the soil water content w:

bapp01-11

The following bapp01-12 values correspond to the plastic state sub-categories:

a) bapp01-13 = 0.00 to 0.50: very soft consistency;
b) bapp01-14 = 0.50 to 0.75: soft consistency;
c) bapp01-15 = 0.75 to 1.00: firm consistency.

Determination of consistency in field tests

The following criteria shall be applied to field tests in order to determine the cohesive soil state:

a) A soil that is squeezed through the fingers when making a fist is very soft.
b) A soil that is easy to knead is soft.
c) A soil that is difficult to knead but can be formed to 3 millimetre thick rolls in the hand without cracking or crumbling is firm.
d) A soil that cracks and crumbles when attempting to form 3 millimetre thick rolls but is still moist enough to be re-formed to a clod is semi-solid.
e) A soil that has dried out and generally appears light-coloured is solid (hard). This soil can no longer be kneaded but only broken apart. Subsequent balling of individual pieces is no longer possible.

A 3: Soil properties of cohesionless soils

Table 3.1. Empirical values for the unit weight of cohesionless soils

bapp01-16

The following points should be observed when adopting the table values:

a) The given empirical values of the unit weight are characteristic average values.
b) When analysing safety against heave, safety against hydraulic failure and safety against uplift, the unit weights are reduced:
– by 1.0 kN/m3 for an earth moist soil;
– by 0.5 kN/m3 for a saturated or a buoyant soil.
The lower characteristic values of the unit weight are obtained.

Table 3.2. Empirical values for the shear strength of cohesionless soils

bapp01-17

The following points should be observed when adopting the table values:

a) The empirical values given for the angle of friction bapp01-18 and for capillary cohesion bapp01-19 represent conservative estimates of the average value according to DIN 1054. They apply to round and rounded grains.
b) If angular grains obviously dominate, the given friction angle values may be increased by bapp01-20.
c) Adoption of the given bandwidths for the shear strength values assumes that the author of the draft and the technical planner posses expertise and experience in the geotechnical field. Otherwise, only the smallest values may be adopted.
d) The empirical values given for capillary cohesion bapp01-21 shall be adopted as follows:
– the lower values apply for a saturation of bapp01-22 and loose compaction;
– the upper values apply for a saturation of bapp01-23 and dense compaction.

If required, interpolation between these values may be performed.

Capillary cohesion may only be taken into consideration if it cannot be lost by drying or flooding of the subsoil due to a rising groundwater table or water ingress from above during construction work.

A 4: Soil properties of cohesive soils

Table 4.1. Empirical values for the unit weight of cohesive soils

bapp01-24
The following points should be observed when adopting the table values:
a) The given empirical values of the unit weight are characteristic average values.
b) For cohesive soils with particularly flat grading curves, such as boulder clay, with grain sizes ranging from clay to sand or gravel (mixed-grained soils of groups GU, GT, SU and ST or bapp01-25 , bapp01-26 , bapp01-27 and bapp01-28 according to DIN 18196), the empirical unit weights given shall be increased by 1.0 kN/m3.
c) When analysing safety against heave, safety against hydraulic failure and safety against uplift, the unit weights are reduced:
– by 1.0 kN/m3 for an earth moist soil;
– by 0.5 kN/m3 for a saturated or a buoyant soil.
The lower characteristic values of the unit weight are obtained.

Table 4.2. Empirical values for the shear strength of cohesive soils

bapp01-29
The following points should be observed when adopting the table values:
a) The empirical values given for the shear strength are conservative estimates of the average value according to DIN 1054.
b) Only characteristic values of bapp01-30 are given in the table as the shear strengths in the unconsolidated condition. The corresponding friction angle shall be adopted as bapp01-31
c) Adoption of the empirical values given for the cohesion bapp01-32 of the consolidated or drained soil and for the shear strength bapp01-33 of the undrained soil is only permissible if it is certain that the consistency will remain unchanged or when an unfavourable change is prevented.
d) Adoption of the given bandwidths for the shear strength values assumes that the author of the draft and the technical planner posses expertise and experience in the geotechnical field. Otherwise, only the smallest values may be adopted.

A 5: Geotechnical categories of excavations

Table 5.1. Geotechnical categories of excavations

bapp01-34
bapp01-35

A 6: Partial safety factors for geotechnical variables

Table 6.1. Partial safety factors bapp01-36 and bapp01-37 for actions and effects

bapp01-38

Table 6.2. Partial safety factors bapp01-41 for resistances in the STR and GEO-2 limit states

bapp01-42

The partial safety factors for the material resistance of the steel tendon consisting of prestressing steel and reinforcing steel is given in DIN EN 1992-1-1 for the limit states GEO-2 and GEO-3 as bapp01-44

The partial safety factors for the material resistance of flexible reinforcement elements is given in EBGEO [170] for the limit states GEO-2 and GEO-3.

EN 1990 prescribes that all partial safety factors for the DS-E design situation are defined as 1.0.

Table 6.3. Partial safety factors bapp01-45 for geotechnical parameters

bapp01-46

A 7: Material properties and partial safety factors for concrete and reinforced concrete structural elements

Table 7.1. Characteristic material properties for normal strength concrete to EN 1992-1-1, Table 3.1

bapp01-47
bapp01-48

characteristic compressive cylinder strength of concrete after 28 days

bapp01-49

characteristic compressive cube strength of concrete after 28 days

bapp01-50

mean value of central tensile strength of the concrete

bapp01-51

characteristic value of the 5% quantile of the central tensile strength of the concrete

bapp01-52

characteristic value of the 95% quantile of the central tensile strength of the concrete

bapp01-53

mean Young’s modulus for normal strength concrete (secant at bapp01-54

Table 7.2. Characteristic material properties for reinforcing steel to DIN 488-1, excerpt from Table 2

bapp01-55

Table 7.3. Partial safety factors

According to EN 1992-1-1/NA, Table NA.2.1, supplemented according to R 24 and R 79

bapp01-60

A 8: Material properties and partial safety factors for steel structural elements

Table 8.1. Characteristic material properties (nominal values)

In the sense of EN 1993-1-1 and EN 1993-5, for product thicknesses < 40 mm

bapp01-64

Table 8.2. Partial safety factors

According to EN 1993-1-1 and /NA, supplemented according to R 24

bapp01-65

See EN 1993-1-8 for partial safety factors used when analysing the capacitty of connections.

A 9: Material properties and partial safety factors for wooden structural elements

Table 9.1. Characteristic values for the strength, stiffness and bulk density parameters for softwood

Excerpt from EN 338 for softwood. The given values are based on the use of new or practically new timber.

bapp01-67

Table 9.2. Partial safety factors

According to EN 1995-1-1/NA, Table NA.2, supplemented according to R 24

bapp01-66

A 10: Empirical values for skin friction and base resistance of sheet pile walls

a) For driven sheet pile walls in cohesionless soils the characteristic empirical values for the base resistance bapp01-69 from Table 10.1 and for the skin friction bapp01-70 from Table 10.2 may be selected for the ultimate limit state analysis in accordance with R 84 (Section 4.8). See Figure R 85-1 for the areas to be adopted.
Note: The values given in Tables 10.1 and 10.2 are similar to the upper table values given for piles in [165] relative to the mean value (around the 50% quantile). Their adoption assumes that a certain vertical deflection of the sheet pile retaining wall can be accepted, also see R 85 (Section 13.10), Paragraph 5.

Table 10.1. Empirical values for characteristic base resistance bapp01-71 of sheet pile walls in cohesionless soils

Mean cone resistance bapp01-72 of CPT in MN/m2

Base resistance bapp01-73 in the ultimate limit state in MN/m2

7.5

7.5

15

15

bapp01-78

20

Table 10.2. Empirical values for characteristic skin friction bapp01-75 of sheet pile walls in cohesionless soils

Mean cone resistance bapp01-76 of CPT in MN/m2

Skin friction bapp01-77 in the ultimate limit state in kN/m2

7.5

20

15

40

bapp01-78

50

Intermediate values may be linearly interpolated.

b) Adoption of the given empirical values assumes the sections are driven. Otherwise, the following shall be observed:
– If the sheet piling is vibrated in the given empirical values for skin friction and base resistance shall be reduced to 75%.
– If the sheet piles are installed to the target depth with the aid of loosening bores or flushing lances, the base resistance and skin friction may only be adopted if confirmed by the geotechnical designer or geotechnical expert.

Recommendations in numerical order

EB 1: Civil engineering requirements for applying the Recommendations
EB 2: Soil parameters
EB 3: General requirements for adopting live loads
EB 4: Magnitude of active earth pressure without surcharges
EB 5: Distribution of active earth pressure load without surcharges
EB 6: Magnitude of total active earth pressure from live loads
EB 7: Distribution of active earth pressure from live loads
EB 8: Earth pressure load as a function of the selected construction method
EB 9: Analysis of the vertical component of the mobilised passive earth pressure
EB 10: Stability analyses for braced excavations in special cases
EB 11: General information on analysis methods
EB 12: Load models for soldier pile walls
EB 13: Not allocated
EB 14: Ground reaction and passive earth pressure for soldier pile walls with free-earth supports
EB 15: Equilibrium of horizontal forces on soldier pile walls
EB 16: Determination of load models for sheet pile walls and in-situ concrete walls
EB 17: Not allocated
EB 18: Determination of at-rest earth pressure
EB 19: Ground reaction and passive earth pressure for sheet pile walls and in-situ concrete walls with free-earth supports
EB 20: Engineering measures for excavations adjacent to structures
EB 21: Analysis of retaining walls with active earth pressure for excavations adjacent to structures
EB 22: Analysis of retaining walls with increased active earth pressure
EB 23: Analysis of retaining walls with at-rest earth pressure
EB 24: Actions
EB 25: Toe with fixed-earth support for soldier pile walls
EB 26: Toe with fixed-earth support for sheet pile walls and in-situ concrete walls
EB 27: Not allocated
EB 28: Active earth pressure for large distances to structures
EB 29: Active earth pressure for small distances to structures
EB 30: Mutual influence of opposing retaining walls for excavations adjacent to structures
EB 31: Purpose of measurements and monitoring
EB 32: Measured variables and measurement methods
EB 33: Measurement planning
EB 34: Location of measurement points
EB 35: Carrying out measurements and forwarding results
EB 36: Evaluation and documentation of measurement results
EB 37: Not allocated
EB 38: General recommendations for excavation in unstable rock
EB 39: Magnitude of rock support pressure
EB 40: Distribution of rock support pressure
EB 41: Bearing capacity of rock for bearing forces at the wall toe
EB 42: Magnitude and distribution of earth pressure for anchored retaining walls
EB 43: Analysis of force transfer from anchors to the ground
EB 44: Analysis of deep-seated stability
EB 45: Analysis of global stability
EB 46: Measures to counteract displacements in anchored retaining walls
EB 47: Bearing capacity of soldier pile infill walls
EB 48: Bearing capacity of soldier piles
EB 49: Bearing capacity of sheet piles
EB 50: Bearing capacity of in-situ concrete walls
EB 51: Bearing capacity of waling
EB 52: Bearing capacity of struts
EB 53: Bearing capacity of trench sheeting and bracing
EB 54: Bearing capacity of provisional bridges and excavation covers
EB 55: Live loads from road and rail traffic
EB 56: Live loads from site traffic and site operations
EB 57: Live loads from excavators and lifting equipment
EB 58: General remarks on excavations in water
EB 59: Flow forces
EB 60: Dewatered excavations
EB 61: Analysis of hydraulic heave safety
EB 62: Analysis of uplift safety
EB 63: Stability analysis of retaining walls in water
EB 64: Design and construction of excavations in water
EB 65: Water management
EB 66: Monitoring excavations in water
EB 67: Supporting retaining walls
EB 68: Earth pressure in retreating states
EB 69: Pressure diagrams for supported soldier pile walls
EB 70: Pressure diagrams for supported sheet pile walls and in-situ concrete walls
EB 71: Superimposing earth pressure components with surcharges
EB 72: Not allocated
EB 73: Excavations with circular plan
EB 74: Excavations with oval plan
EB 75: Excavations with rectangular plan
EB 76: Governing regulations
EB 77: Safety factor approach
EB 78: Limit states
EB 79: Partial safety factors
EB 80: Determination and analysis of embedment depths
EB 81: Stability analysis
EB 82: Determination of action effects
EB 83: Serviceability analysis
EB 84: Analysis of the transfer of vertical forces into the subsurface
EB 85: External bearing capacity of soldier piles, sheet pile walls and in-situ concrete walls
EB 86: Bearing capacity of tension piles and ground anchors
EB 87: Not allocated
EB 88: Material parameters and partial safety factors for structural element resistances
EB 89: Wall friction angle
EB 90: Scope of Recommendations R 91 to R 101
EB 91: Slopes in soft soils
EB 92: Lining systems in soft soils
EB 93: Construction procedure in soft soils
EB 94: Shear strength of soft soils
EB 95: Earth pressure on retaining walls in soft soils
EB 96: Ground reaction for excavations in soft soils
EB 97: Water pressure in soft soils
EB 98: Determination of embedment depth and action effects for excavations in soft soils
EB 99: Additional stability analyses for excavations in soft soils
EB 100: Water management for excavations in soft soils
EB 101: Serviceability of excavation structures in soft soils
EB 102: Modulus of subgrade reaction method
EB 103: Finite-element method
EB 104: Allowable simplifications in the GEO 2 or STR limit states
EB 105: Not allocated
EB 106: Planning and examination of excavations

Bibliography

[1] Geotechnical Engineering Handbook, 7th Edition. Berlin: Ernst & Sohn, Volume 1: 2008, Volume 2: 2009, Volume 3: 2009 respectively.

[2] Recommendations of the Working Committee for Waterfront Structures, 10th Edition. Berlin: Ernst & Sohn 2009; in addition: Annual Technical Reports of the Working Committee for Waterfront Structures. Bautechnik, No. 12 annually.

[3] Ohde, J.: Zur Theorie Erddruckes unter besonderer Berücksichtigung der Erddruckverteilung. Die Bautechnik 16 (1938), No. 10/11, p. 150, No. 13, p. 176, No. 19, p. 241, No. 25, p. 331, No. 37, p. 480, No. 42, p. 570, No. 53/54, p. 753, Correspondence No. 52, p. 715.

[4] Ohde, J.: Zur Erddrucklehre. Die Bautechnik 25 (1948), No. 6, p. 122, Die Bautechnik 26 (1949), No. 12, p. 360, Die Bautechnik 27 (1950), No. 4, p. 111, Die Bautechnik 28 (1951), No. 12, p. 297, Die Bautechnik 29 (1952), No. 2, p. 31, No. 8, p. 219, No. 11, p. 315.

[5] Briske, R.: Erddruckverlagerung bei Spundwandbauwerken. Berlin: Ernst & Sohn 1957.

[6] Briske, R.: Anwendung von Druckumlagerungen bei Baugrubenumschließungen. Die Bautechnik 35 (1958), No. 6, p. 242, No. 7, p. 279.

[7] Spilker, A.: Mitteilung über die Messung der Kräfte in einer Baugrubenaussteifung. Die Bautechnik 15 (1937), No. 1, p. 16.

[8] Klenner, C.: Versuche über die Verteilung des Erddruckes über die Wände ausgesteifter Baugruben. Die Bautechnik 19 (1941), No. 29, p. 316.

[9] Lehmann. H.: Die Verteilung des Erdangriffes an einer oben drehbar gelagerten Wand. Die Bautechnik 20 (1942), No. 31/32, p. 273.

[10] Peck, R. B.: Earth Pressure Measurements in Open Cuts, Chicago (III.) Subway. Am. Soc. Civ. Eng. Transact. (1943), p. 1008.

[11] Tschebotarioff, G. P.: Final Report. Large Scale Earth Pressure Tests with Model Flexible Bulkheads. Princeton University. USA, Jan. 1949.

[12] Weißenbach, A.: Messungen an U-Bahn-Baugruben in Hamburg. Also see [89] and [90].

[13] Briske, R. und Pirlet, F.: Messungen über die Beanspruchungen des Baugrubenverbaues der Kölner U-Bahn. Die Bautechnik 45 (1968), No. 9, p. 290.

[14] Müller-Haude, H. Ch. and v. Scheibner, D.: Neue Bodendruckmessungen an Baugruben und Tunnelbauten der Berliner U-Bahn. Die Bautechnik 42 (1965), No. 9, p. 293, No. 11, p. 380.

[15] Heeb, A., Schurr, E., Bons, M., Henke, K. F. and Müller, M.: Erddruckmessungen am Baugrubenverbau für Stuttgarter Verkehrsbauwerke. Die Bautechnik 43 (1966), No. 6, p. 208.

[16] Breth, H. and Wanoschek, H. R.: Steifenkraftmessungen in einer durch Pfahlwände gesicherten Tiefbahnbaugrube im Frankfurter Ton. Der Bauingenieur 44 (1969), No. 7, p. 240.

[17] Ranke, A. H. and Ostermayer, H.: Beitrag zur Stabilitätsuntersuchung mehrfach verankerter Baugrubenumschließungen. Die Bautechnik 45 (1968), No. 10, p. 341.

[18] Brinch Hansen, J.: Spundwandberechnung nach dem Traglastverfahren. International Geotechnical Engineering Course 1961. Mitteilungen des Instituts für Verkehrswasserbau, Grundbau und Bodenmechanik der TH Aachen, No. 25, p. 171, Aachen 1962.

[19] Weißenbach, A.: Berechnung von mehrfach gestützten Baugrubenspundwänden und Trägerbohlwänden nach dem Traglastverfahren. Straße Brücke Tunnel 21 (1969), No. 1, p. 17, No. 2, p. 38, No. 3, p. 67. No. 5, p. 130.

[20] Weißenbach, A.: Der Erdwiderstand vor schmalen Druckflächen. Die Bautechnik 39 (1962), No. 6, p. 204.

[21] Kärcher, K.: Erdwiderstand vor schmalen Druckflächen. Modellversuche mit starren Trägern in bindigen Böden. Die Bautechnik 45 (1968), No. 1, p. 31.

[22] Schmidt, H.: Verwendung von IPB- und PSp-Stahl als Baugrubensteifen beim U-Bahn-Bau in Hamburg und ihre Bemessung. Der Stahlbau 32 (1963), No. 2, p. 46.

[23] Blum, H.: Einspannungsverhältnisse bei Bohlwerken. Berlin: W. Ernst & Sohn 1931.

[24] Lackner, E.: Berechnung mehrfach gestützter Spundwände, 3rd Edition. Berlin: W. Ernst & Sohn 1950.

[25] Terzaghi, K.; translated and edited by R. Jelinek: Theoretische Bodenmechanik. Berlin/Göttingen/Heidelberg: Springer Verlag 1954.

[26] Weißenbach, A.: Baugrubensicherung; Geotechnical Engineering Handbook, 4th Edition, Volume 3, p. 379. Berlin: Ernst & Sohn 1992.

[27] Windels, R.: Bohlwände und Traglastverfahren. Die Bautechnik 47 (1970), No. 9, p. 300.

[28] DASt-Richtlinie für die Anwendung des Traglastverfahrens im Stahlbau.

[29] Breth, H.: Das Tragverhalten von Injektionsankern im Ton. Vorträge der Baugrundtagung 1970 in Düsseldorf, p. 57. Deutsche Gesellschaft für Erd- und Grundbau e. V., Essen 1971.

[30] Weißenbach, A.: Meßverfahren zur Ermittlung von Größe und Verteilung des Erddruckes auf Baugrubenwände. Vorträge der Baugrundtagung 1968 in Hamburg, p. 257. Deutsche Gesellschaft für Erd- und Grundbau e. V., Essen 1969.

[31] Windels, R.: Traglasten von Balkenquerschnitten bei Angriff von Biegemoment, Längs- und Querkraft. Der Stahlbau 39 (1970), No. 1, p. 10.

[32] Briske, R.: Erddruckumlagerungen bei abgesteiften Trägerbohlwänden. Die Bautechnik 48 (1971), No. 8, p. 254.

[33] Wittke, W.: Verfahren zur Standsicherheitsberechnung starrer, auf ebenen Flächen gelagerter Körper und die Anwendung der Ergebnisse auf die Standsicherheitsberechnung von Felsböschungen. Publications of the Institut für Bodenmechanik und Grundbau. Technical University of Karlsruhe, No. 20, 1965.

[34] John, K. W.: Three-Dimensional Stability Analyses of Slopes in Jointed Rock, Proceedings 1970, Johannesburg, South Africa.

[35] Buchholz, W.: Erdwiderstand auf Ankerplatten. Yearbook of the Hafenbautechnischen Gesellschaft 1930/31, Berlin. Also see [1].

[36] Jelinek, R. and Ostermayer, H.: Zur Berechnung von Fangedämmen und verankerten Stützwänden. Die Bautechnik 44 (1967), No. 5, p. 167.

[37] Meißner, H.: Verankerung von Wänden, die Geländesprünge verformungsarm abstützen sollen. Der Bauingenieur 45 (1970), No. 9, p. 337.

[38] Breth, H. and Romberg, W.: Messungen an einer verankerten Wand. Vorträge der Baugrundtagung 1972 in Stuttgart, p. 807. Deutsche Gesellschaft für Erdund Grundbau e. V., Essen 1973.

[39] Nendza, H. and Klein, K.: Bodenverformung beim Aushub tiefer Baugruben. Haus und Technik presentation publications, no. 314.

[40] Franke, E.: Ruhedruck in kohäsionslosen Böden. Die Bautechnik 51 (1974), No. 1, p. 18.

[41] Gaibl, A. und Ranke. A.: Belastung starrer Verbauwände. Bauingenieur-Praxis, No. 79. Berlin/Munich/Düsseldorf: Ernst & Sohn 1973.

[42] Pätzold, J.: Empfehlungen für Messungen im Zusammenhang mit schildvorgetriebenen Tunneln. Die Bautechnik 49 (1972), No. 9, p. 296.

[43] Petersen, G. and Schmidt, H.: Zur Berechnung von Baugrubenwänden nach dem Traglastverfahren. Die Bautechnik 50 (1973), No. 3, p. 85.

[44] Petersen, G. and Schmidt, H.: Untersuchungen über die Standsicherheit verankerter Baugrubenwände an Beispielen des Hamburger Schnellbahnbaues. Straße Brücke Tunnel 23 (1971), No. 9, p. 225.

[45] Schmidt, H.: Zur Ermittlung der kritischen tiefen Gleitfuge von mehrfach verankerten hohen Baugrubenwänden. Die Bautechnik 51 (1974), No. 6, p. 210.

[46] Weißenbach, A.: Baugruben, Part II: Berechnungsgrundlagen. Berlin/München/Düsseldorf: W. Ernst & Sohn 1975.

[47] Endo, M.: Earth Pressure in the Excavation Work of Aluvial Clay Stratum. Proc. Conf. Soil Mech. Budapest 1963, p. 21.

[48] Schmitt, G. P. and Breth, H.: Tragverhalten und Bemessung von einfach verankerten Baugrubenwänden. Straße Brücke Tunnel 27 (1975), No. 6, p. 145. Also see [50].

[49] Breth, H. and Wolff, R.: Die Versuche mit einer mehrfach verankerten Modellwand. Die Bautechnik 53 (1976), No. 2, p. 38. Also see [50].

[50] Briske, R.: Correspondence to [49]. Die Bautechnik 55 (1978), No. 6, p. 214.

[51] Breth, H. and Stroh., D.: Ursachen der Verformung im Boden beim Aushub tiefer Baugruben und konstruktive Möglichkeiten zur Verminderung der Verformung von verankerten Baugruben. Der Bauingenieur 51 (1976), No. 3, p. 81.

[52] Weißenbach, A.: Baugruben, Part III: Berechnungsverfahren. Berlin/München/Düsseldorf: W. Ernst & Sohn 1977.

[53] Karstedt, J.: Ermittlung eines aktiven Erddruckbeiwertes für den räumlichen Erddruckfall bei rolligen Böden. Tiefbau Ingenieurbau Straßenbau 1978, No. 4, p. 258.

[54] Huder, J. and Arnold, R.: Die Berechnung der freien Ankerlänge bei verankerten Baugrubenwänden unter Berücksichtigung der neuen SIA-Norm 191. Mitteilungen der Schweizerischen Gesellschaft für Boden- und Felsmechanik. Spring conference 1978, 21 and 22 April, Lausanne, p. 1.

[55] Schulz. H.: Die Sicherheitsdefinition bei mehrfach verankerten Stützwänden. Conference reports, 6th European Conference on Soil Mechanics and Geotechnical Engineering in Vienna 1976. Volume 1.1, p. 189.

[56] Davidenkoff, R. und Franke, L.: Untersuchung der räumlichen Sickerströmung in eine umspundete Baugrube in offenen Gewässern. Die Bautechnik 42 (1965), No. 9, p. 298.

[57] Davidenkoff, R. und Franke, L.: Räumliche Sickerströmung in eine umspundete Baugrube im Grundwasser. Die Bautechnik 43 (1966), No. 12, p. 401.

[58] McNamee, J.: Seepage into a Sheeted Excavation. Geotechnique 1, 1949, No. 4, p. 229. Also see [26].

[59] Knaupe, W.: Baugrubensicherung und Wasserhaltung. Berlin: VEB Verlagswesen 1984.

[60] Terzaghi, K. and Peck, R. B., German edition edited by A. Bley: Die Böden in der Baupraxis. Berlin/Göttingen/Heidelberg: Springer 1961.

[61] Davidenkoff, R.: Zur Berechnung des hydraulischen Grundbruches. Die Wasserwirtschaft 46 (1956), No. 9, p. 230.

[62] Jeßberger, H. L.: Bodenfrost und Eisdruck. Geotechnical Engineering Handbook, 3rd Edition, Volume 1 Berlin/Munich/Düsseldorf: Ernst & Sohn 1980. In addition: Jeßberger, H. L.: Frost im Baugrund; Hager, M.: Eisdruck. Both in the Geotechnical Engineering Handbook, 4th Edition, Volume 2. Berlin: Ernst & Sohn 1991.

[63] Schenk, W., Smoltczyk, H.-U. and Lächler, W.: Pfahlroste, Berechnung und Konstruktion. Geotechnical Engineering Handbook, 3rd Edition. Volume 2. Berlin/Munich: Ernst & Sohn 1982. In addition: 4th Edition, Volume 3. Berlin: Ernst & Sohn 1992.

[64] Herth, W. and Arndts, E.: Theorie und Praxis der Grundwasserabsenkung. Berlin: Ernst & Sohn 1985.

[65] Lehmann, G.: Untersuchungen an Grundwasserversickerungen beim Bau der Kölner U-Bahn. Tiefbau Ingenieurbau Straßenbau 22, (1980). No. 1, p. 9.

[66] Lehmann, G.: Erfahrungen bei der Grundwassersickerung mit Vertikalbrunnen. Tiefbau Ingenieurbau Straßenbau 23 (1981), No. 5, p. 308.

[67] Civil Engineering Department of the City of Bonn: Anker- und Steifenkraftmessungen an Bohlträgerwänden. Bonn 1979.

[68] Starke, P.: Zur Berechnung von Trägerbohlwänden in Böden ohne Kohäsion. Die Bautechnik 51 (1974), p. 269.

[69] Briske, R.: Erddruckumlagerungen bei abgesteiften Trägerbohlwänden. Die Bautechnik 51 (1980), p. 343 and p. 420.

[70] Caquot, A., Kérisel, J. and Absi, E.: Tables de Butée et de Poussée. Gauthier-Villars Paris/Brussels/Montreal, 1973.

[71] Weißenbach, A.: Programmierbare Erdwiderstandsbeiwerte. Taschenbuch Tunnelbau 1985, Section C „Baugruben“. Essen: Verlag Glückauf 1984.

[72] Ulrichs, K. R.: Ergebnisse von Untersuchungen über Auswirkungen bei der Herstellung tiefer Baugruben. Tiefbau Ingenieurbau Straßenbau 21 (1979), p. 706.

[73] Weißenbach, A.: Neue Erkenntnisse zum Erddruck auf ausgesteifte Trägerbohlwände. 8 respectively. Danube-European Conference on Soil Mechanics and Geotechnical Engineering on 25th/26th Sept. 1986 in Nuremberg. Volume I, p. 49. Essen: Deutsche Gesellschaft für Erd- und Grundbau e. V. 1987.

[74] Ulrichs, K. R.: Untersuchungen über das Trag- und Verformungsverhalten verankerter Schlitzwände in rolligen Böden. Die Bautechnik 58 (1981), p. 124.

[75] Grundbegriffe der Felsmechanik und der Ingenieurgeologie. Deutsche Gesellschaft für Erd- und Grundbau e. V.; Essen: Verlag Glückauf 1982.

[76] Merkblatt für Felsgruppenbeschreibung für bautechnische Zwecke im Straßenbau. Cologne: Forschungsgesellschaft für das Straßenwesen 1980.

[77] Wittke, W.: Felsmechanik. Berlin/Heidelberg/New York/Tokyo: Springer Verlag 1984.

[78] Henke, K. F. and Kaiser, W.: Recommendation No. 4 of Working Group 19 “Rock Testing Procedures” of the Deutsche Gesellschaft für Erd- und Grundbau e. V. Bautechnik 51 (1980), pp. 325–328.

[79] Wittmann, L.: Beurteilung der hydrodynamischen Bodenstabilität. Tiefbau Ingenieurbau Straßenbau 1981, p. 478.

[80] Heibaum, M. H.: Zur Frage der Standsicherheit verankerter Stützwände auf der tiefen Gleitfuge. Mitt. Inst. Grundbau, Bodenmechanik u. Felsbau, Technical University of Darmstadt, No. 27 (1987), p. 176.

[81] Walz, B. and Hock, K.: Berechnung des räumlichen aktiven Erddrucks mit der modifizierten Elementscheibentheorie. Report No. 6 of the research and work reports from the departments for geotechnical engineering, soil mechanics and subterranean building at the Bergisch University of Wuppertal, March 1987.

[82] Walz, B. and Hock, K.: Berechnung des räumlichen Erddrucks auf die Wandungen von schachtartigen Baugruben. Taschenbuch für den Tunnelbau 1988. Essen: Verlag Glückauf GmbH.

[83] Beresanzew, V. G.: Earth Pressure on Cylindrical Retaining Walls. Proc. Brussels Conf. on Earth Pressure Problems II (Brussels 1958), p. 21. Also see: Kezdi, A.: Erddrucktheorien. Berlin/Göttingen/Heidelberg: Springer 1962.

[84] Steinfeld, K.: Über den Erddruck auf Schacht- und Brunnenwandungen. Presentation at the Baugrundtagung 1958 in Hamburg. Deutsche Gesellschaft für Erdund Grundbau e. V., Essen.

[85] Gußmann, P. and Lutz, W.: Schlitzstabilität bei anstehendem Grundwasser. Geotechnik 4 (1981), No. 2, pp. 70–82. Also see correspondence in Geotechnik 4 (1981), No. 4, pp. 206–208.

[86] Walz. B. and Pulsfort, M.: Ermittlung der rechnerischen Standsicherheit suspensionsgestützter Erdwände auf der Grundlage eines prismatischen Bruchkörpermodells. Tiefbau Ingenieurbau Straßenbau 25 (1983). No. 1, pp. 4–7 and No. 2, pp. 82–86.

[87] Piaskowski, A. and Kowalewski, Z.: Application of Thixotropic Clay Suspensions for Stability of Vertical Sides of Deep Trenches Without Strutting. Proc, of 6th Int. Conf. on Soil Mech. and Found. Eng. Montreal (1965), Vol. 111.

[88] Walz, B.: Erddruckabminderung an einspringenden Baugrubenecken. Bautechnik 71 (1994), pp. 90–95.

[89] Weißenbach. A.: Auswertung der Berichte über Messungen an ausgesteiften Trägerbohlwänden in nichtbindigem Boden. Issue No. 3 of the Schriftenreihe of the Department for Geotechnical and Foundation Engineering at the University of Dortmund. Dortmund 1991.

[90] Weißenbach, A.: Auswertung der Berichte über Messungen an ausgesteiften Trägerbohlwänden in nichtbindigem Boden. Issue No. 8 of the Schriftenreihe of the Department for Geotechnical and Foundation Engineering at the University of Dortmund. Dortmund 1993.

[91] Mao, P.: Erdwiderstand von Sand in Abhängigkeit von Wandbewegungsart und Sättigungsgrad. No. 16 of the Schriftenreihe of the Department for Geotechnical and Foundation Engineering at the University of Dortmund. Dortmund 1993.

[92] Besler, D.: Einfluß von Temperaturerhöhungen auf die Tragfähigkeit von Baugrubensteifen. Bautechnik 65 (1994), No. 11, pp. 478–755.

[93] Schäfer, J.: Erdwiderstand vor schmalen Druckflächen im rheinischen Schluff. Issue No. 2 of the Schriftenreihe of the Department for Geotechnical and Foundation Engineering at the University of Dortmund. Dortmund 1990.

[94] Besler, D.: Verschiebungsgrößen bei der Mobilisierung des Erdwiderstandes von Sand. Bautechnik 72 (1995), No. 11, pp. 748–755.

[95] Wittlinger, M.: Ebene Verformungsuntersuchungen zur Weckung des Erdwiderstandes bindiger Böden. Institute for Geotechnical Engineering at the University of Stuttgart, Mitteilung 35. Stuttgart 1994.

[96] Weißenbach, A. and Gollub, P: Neue Erkenntnisse über mehrfach verankerte Ortbetonwände bei Baugruben in Sandboden mit tiefliegender Injektionssohle, hohem Wasserüberdruck und großer Bauwerkslast. Bautechnik 72 (1995), No. 12, pp. 780-799.

[97] Gollub, P. and Klobe, B.: Tiefe Baugruben in Berlin: Bisherige Erfahrungen und geotechnische Probleme. Geotechnik 19 (1995), pp. 115–121.

[98] Blum, H.: Beitrag zur Berechnung von Bohlwerken. Die Bautechnik 27 (1950) pp. 45–52.

[99] Kranz, E.: Über die Verankerung von Spundwänden. Berlin: Ernst & Sohn 1953.

[100] Weißenbach, A. and Kempfert, H.-G.: German National Report on “Braced Excavations in Soft Ground”. Proceedings of the International Symposium on Underground Construction in Soft Ground in New Delhi, India, 1994, pp. 9–12.

[101] Goldscheider, M. and Gudehus, G.: Bau einer Tiefgarage im Konstanzer Seeton – Baugrubensicherung und bodenmechanische Anforderungen. Presentations at the Baugrundtagung 1988 in Hamburg, pp. 385–406. Deutsche Gesellschaft für Geotechnik e. V.

[102] Katzenbach, R., Floss, R. and Schwarz, W.: Neues Baukonzept zur verformungsarmen Herstellung tiefer Baugruben in weichem Seeton. Presentations at the Baugrundtagung 1992 in Dresden, pp. 13–31. Deutsche Gesellschaft für Geotechnik e. V.

[103] Breymann, H.: Tiefe Baugruben in weichplastischen Böden, 7th Ch. Veder Colloquium. TU Graz, 1992.

[104] Ostermayer, H. and Gollub, P.: Baugrube Karstadt in Rosenheim. Presentations at the Baugrundtagung 1996 in Berlin, pp. 341–360. Deutsche Gesellschaft für Erd- und Grundbau e. V.

[105] Scherzinger, T.: Materialverhalten von Seetonen – Ergebnisse von Laboruntersuchungen und ihre Bedeutung für das Bauen im weichen Baugrund. Publications of the Institute for Soil Mechanics and Rock Mechanics at the Fridericiana University in Karlsruhe, No. 122. 1992.

[106] Schuppener, B. and Kiekbusch, M.: Plädoyer für die Abschaffung und den Ersatz der Konsistenzzahl, Geotechnik 11 (1988), pp. 186–192.

[107] Gußmann, P.: “Numerical Methods” chapter. Geotechnical Engineering Handbook, 4th Edition, Volume 1, pp. 420–448. Berlin: Ernst & Sohn 1990.

[108] Bjerrum, L. and Eide, O.: Stability of Strutted Excavations in Clay. Geotechnique 1956, Vol. 6, pp. 34–47.

[109] v. Soos, P.: Eigenschaften von Boden und Fels; ihre Ermittlung im Labor. Geotechnical Engineering Handbook, 5th Edition, Volume 1, pp. 87–157. Berlin: Ernst & Sohn 1997.

[110] Merkblatt über den Einfluß der Hinterfüllung auf Bauwerke (FGSV 526). Forschungsgesellschaft für Straßen- und Verkehrswesen, Arbeitsgruppe Erd- und Grundbau. 1994 issue.

[111] Vermeer, P. A., Meier, C.-P.: Standsicherheit und Verformungen bei tiefen Baugruben in bindigem Boden. Presentations at the Baugrundtagung 1998 in Stuttgart, pp. 133-148. Deutsche Gesellschaft für Geotechnik e. V.

[112] Kempfert, H.-G. and Stadel, M.: Berechnungsgrundlagen für Baugruben in normalkonsolidierten weichen bindigen Böden. Bauingenieur 72 (1997), pp. 207–213.

[113] Bjerrum, L.: Problems of Soil Mechanics and Construction on Soft Clay and Structurally Unstable Soils. Proc. 8th Intern. Conf. on Soil Mech. and Found. Eng., Moscow 1973, Vol. 3, pp. 111–159.

[114] Jörß, O.: Erfahrungen bei der Ermittlung von cu-Werten mit Hilfe von Drucksondierungen in bindigen Böden. Geotechnik 1998, No. 1, pp. 26–27.

[115] Lunne, T. et al.: Cone Penetration Testing in Geotechnical Practice. Black Academic and Professional. London 1997.

[116] Leinenkugel, H. J.: Deformations- und Festigkeitsverhalten bindiger Erdstoffe; Experimentelle Ergebnisse und ihre physikalische Bedeutung. Publications of the Institute for Soil Mechanics and Rock Mechanics at the University of Karlsruhe, No. 66 (1997).

[117] Weißenbach, A.: Baugrubensicherung. Geotechnical Engineering Handbook, 5th Edition, Volume 3, pp. 397–511. Berlin: Ernst & Sohn 1997.

[118] Freiseder, G. M.: Ein Beitrag zur numerischen Berechnung von tiefen Baugruben in weichen Böden. Technical University of Graz, Institute for Soil Mechanics and Foundation Engineering, No. 3 (1998).

[119] Kempfert, H. G. and Berhane, G.: Zur Diskussion von dränierten oder undränierten Randbedingungen bei Baugruben in weichen Böden. Bautechnik 79 (2002), pp. 603–611.

[120] Weiß, K.: Baugrundaufschluß durch Drucksondierungen. Section 3.4 in the “Ground Investigations in the Field” chapter of the Geotechnical Engineering Handbook, 5th Edition, Volume 1, pp. 65–71. Berlin: Ernst & Sohn, 1997.

[121] Hettler, A. and Besler, D.: Zur Bettung von gestützten Baugrubenwänden in Sand. Bautechnik 78 (2001), pp. 89–100.

[122] DGGT Working Group 1.6, “Numerical Methods in Geotechnics”: Recommendations of DGGT Working Group 1.6, Section 3: “Excavations”. Geotechnik 25 (2002), No. 1, pp. 44–56.

[123] Weißenbach, A.: Standsicherheitsnachweise für einmal ausgesteifte Baugrubenwände. Taschenbuch für den Tunnelbau 1982, Section C “Baugruben”. Essen: Verlag Glückauf 1981.

[124] Recommendations on Excavations, EAB, 3rd Edition. Edition. Berlin: Ernst & Sohn 1994.

[125] Recommendations on Excavations, based on the partial safety factor approach, EAB-100. Berlin: Ernst & Sohn 1996.

[126] Hettler A. and Maier, Th.: Verschiebungen des Bodenauflagers bei Baugruben auf der Grundlage der Mobilisierungsfunktion von Besler. Bautechnik 81 (2004), No. 5, pp. 323–336.

[127] Vogt, N. and Stiegeler, R.: Vertikales Gleichgewicht einer in den Suspensionsschlitz eingehängten Spundwand. Felsbau 21 (2003), No. 5, pp. 18–25.

[128] Mutschler, T.: Revision of Recommendation No. 1 of Working Group 19 “Rock Testing Procedures” of the Deutschen Gesellschaft für Geotechnik e. V. Bautechnik 81 (2004), No. pp. 825–834.

[129] Hoek, E., Kaiser, P. K. and Bawden, W. F.: Support of Underground Excavations in Hard Rock, pp. 84–98. Rotterdam/Brookfield; A. A. Balkema 1995.

[130] Hettler, A. and Stoll, Ch.: Nachweis des Aufbruchs der Baugrubensohle nach der neuen DIN 1054:2003-01. Bautechnik 81 (2004), No. 7, pp. 562–568.

[131] Bartl, U.: Zur Mobilisierung des passiven Erddrucks in kohäsionslosem Boden. Technical University of Dresden. Dissertation 2004.

[132] Hettler, A., Biehl, F. and Leibnitz, St.: Zur Kurzzeitstandsicherheit bei Baugrubenkonstruktionen in weichen Böden. Bautechnik 76 (2002), No. 9, pp. 612–619.

[133] Weißenbach, A., Hettler, A.: Berechnung von Baugrubenwänden nach der neuen DIN 1054. Bautechnik 80 (2003), No. 12, pp. 857–874.

[134] Frank, R. et al.: Designer’s Guide to EN 1997-1, Eurocode 7: Geotechnical Design Part 1: General Rules. London, Thomas Telford.

[135] Radomski, H.: Untersuchungen über den Einfluß der Querschnittsform wellenförmiger Spundwände auf die statischen und rammtechnischen Eigenschaften. Mitteilungen des Instituts für Wasserwirtschaft, Grundbau und Wasserbau der University of Stuttgart, No. 10 (1968).

[136] Hettler, A., Vega-Ortiz, S. and Gutjahr, St.: Nichtlinearer Bettungsansatz von Besler bei Baugrubenwänden. Bautechnik 82 (2005), No. 9, pp. 593–604.

[137] Borchert, K.-M., Mönnich, K.-D., Savidis, S. and Walz, B.: Tragverhalten von Zugpfahlgruppen für Unterwasserbetonsohlen. Presentations at the Baugrundtagung 1998 in Stuttgart, pp. 529–557. Deutsche Gesellschaft für Geotechnik e. V.

[138] Triantafyllidis, Th.: Neue Erkenntnisse aus Messungen an tiefen Baugruben in Berlin. Bautechnik 75 (1998), pp. 133–154.

[139] Schäfer, R. and Triantafyllidis, Th.: Auswirkung der Herstellungsmethode auf den Gebrauchszustand von Schlitzwänden in weichen bindigen Böden. Bautechnik 81 (2004), No. 11, pp. 880–889.

[140] Berhane G.: Experimental, Analytical and Numerical Investigations of Excavations in Normally Consolidated Soft Soils. Schriftenreihe Geotechnik, University of Kassel, No. 14 (2003).

[141] Savidis, S., Rackwitz, F., Borchert, K.-M. and Detering, K.: Verformungen von Unterwasserbetonsohlen. VDI-Berichte No. 1436, pp. 251–267. Düsseldorf: VDI-Verlag GmbH 1999.

[142] Rodatz, W. and Maybaum, G.: Sohlhebungsmessungen Lehrter Bahnhof und Spree-Querung. VDI-Berichte No. 1436, pp. 251–267. Düsseldorf: VDI-Verlag GmbH 1999.

[143] DBV-Merkblatt „Unterwasserbeton“, May 1999. Berlin: Deutscher Beton- und Bautechnik-Verein e. V.

[144] Bieberstein, A., Herbst, J. and Brauns, J.: Hochliegende Dichtungssohlen bei Baugrubenumschließungen – Bemessungsregel zur Vermeidung von Sohlaufbrüchen im Bereich von Fehlstellen. Geotechnik 22 (1999), No. 2, pp. 114–123.

[145] Triantafyllidis, Th.: Ein einfaches Modell zur Abschätzung von Setzungen bei der Herstellung von Rüttel-Injektionspfählen. Bautechnik 77 (2000), No. 3, pp. 161–168.

[146] Borchert, K.-M.: Dichtigkeit von Baugruben bei unterschiedlichen Sohlen-Konstruktionen – Lehren aus Schadensfällen. VDI-Berichte No. 1436, pp. 21–43. Düsseldorf: VDI-Verlag GmbH 1999.

[147] Harder, H.: Betrachtungen zum Standsicherheitsnachweis natürlicher Sohldichtungen von Baugruben. Geotechnik 23 (2000), No. 4, pp. 276–281.

[148] Arwanitaki, A., König, D. and Triantafillydis, Th.: Zum Kontaktverhalten zwischen suspensionsgestützten Ortbetonwänden und dem anstehenden Boden. Bautechnik 84 (2007), No. 11, pp. 781–792.

[149] Arwanitaki, A.: Über das Kontaktverhalten einer Zweiphasen Schlitzwand und nichtbindigen Böden. Schriftenreihe des Lehrstuhls für Grundbau, Boden und Felsmechanik, Ruhr-University Bochum, No. 41, 2009.

[150] Hettler, A.: Empfehlung EB 102 des Arbeitskreises „Baugruben“ der DGGT zur Anwendung des Bettungsmodulverfahrens. Bautechnik 88 (2011), No. 9, pp. 640–645.

[151] Brand, T., Bastian, D. and Hillmann, S.: Die Berechnung von Baugruben mit dem Bettungsmodulverfahren nach EB 102. Bautechnik 88 (2011), No. 10, pp. 694–706.

[152] Hettler, A. and Schanz, T.: Anwendung der Finite-Elemente-Methode bei Baugrubenwänden. Bautechnik 85 (2008), No. 9, pp. 603–615.

[153] Heibaum, M. and Herten, M.: Finite-Elemente-Methode für geotechnische Nachweise. Bautechnik 84 (2007), No. 9, pp. 627–630.

[154] Heibaum, M. and Herten, M.: Correspondence to: Perau, E.: Konzept und FE-Modellierung zum Nachweis der erforderlichen Ankerlängen, Bautechnik 85 (2008) No. 9, pp. 653, 655.

[155] Hettler, A. and Borchert, K.-M.: Herstellbedingte Verformungen bei tiefen Baugruben, Baugrundtagung München 2010, Deutsche Gesellschaft für Geotechnik (ed.), pp. 35–42.

[156] Hettler, A. and Triantafyllidis, Th.: Deformations of Deep Excavation Walls Induced by Construction Processes, Proc. of 17th International Conference on Soil Mechanics and Geotechnical Engineering (ICSMGE), Alexandria, Egypt, 2009. Millpress, IOS Press, Amsterdam, Vol. III, pp. 2457–2460.

[157] Moormann, C.: Trag- und Verformungsverhalten tiefer Baugruben in bindigen Böden unter besonderer Berücksichtigung der Baugrund-Tragwerk- und der Baugrund-Grundwasser-Interaktion. Mitteilungen des Institutes und der Versuchsanstalt für Geotechnik der Technischen Universität Darmstadt, No. 59, 2002.

[158] Moormann, C. (2005): An investigation on the spatial behaviour of deep excavations. Pertanika Journal of Science and Technology (2005) Vol. 13(1).

[159] Mittag, J., Richter, T.: Grundwasserabsenkungen und Grundwasserentspannungen/Risiken und wirtschaftliche Chancen. Hans Lorenz Symposium 2009, Veröffentlichungen des Grundbauinstitutes der TU Berlin, No. 47, 2009.

[160] Ziegler, M. and Aulbach, B.: Zur Sicherheit gegen hydraulischen Grundbruch. Presentations at the Baugrundtagung 2010 in Munich, Deutsche Gesellschaft für Geotechnik e. V., 2010.

[161] Busch, K.-F., Luckner, L. and Tiemer, K.: Geohydraulik, Lehrbuch der Hydrogeologie. Volume 3, Gebrüder Borntrueger, Berlin, Stuttgart, 1993.