Details

Rhodium Catalysis in Organic Synthesis


Rhodium Catalysis in Organic Synthesis

Methods and Reactions
1. Aufl.

von: Ken Tanaka

178,99 €

Verlag: Wiley-VCH
Format: EPUB
Veröffentl.: 31.12.2018
ISBN/EAN: 9783527811892
Sprache: englisch
Anzahl Seiten: 688

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

An essential reference to the highly effective reactions applied to modern organic synthesis <br> <br> Rhodium complexes are one of the most important transition metals for organic synthesis due to their ability to catalyze a variety of useful transformations. Rhodium Catalysis in Organic Synthesis explores the most recent progress and new developments in the field of catalytic cyclization reactions using rhodium(I) complexes and catalytic carbon-hydrogen bond activation reactions using rhodium(II) and rhodium(III) complexes. <br> <br> Edited by a noted expert in the field with contributions from a panel of leading international scientists, Rhodium Catalysis in Organic Synthesis presents the essential information in one comprehensive volume. Designed to be an accessible resource, the book is arranged by different reaction types. All the chapters provide insight into each transformation and include information on the history, selectivity, scope, mechanism, and application. In addition, the chapters offer a summary and outlook of each transformation. This important resource: <br> <br> -Offers a comprehensive review of how rhodium complexes catalyze a variety of highly useful reactions for organic synthesis (e.g. coupling reactions, CH-bond functionalization, hydroformylation, cyclization reactions and others) <br> -Includes information on the most recent developments that contain a range of new, efficient, elegant, reliable and useful reactions <br> -Presents a volume edited by one of the international leading scientists working in the field today <br> -Contains the information that can be applied by researchers in academia and also professionals in pharmaceutical, agrochemical and fine chemical companies <br> <br> Written for academics and synthetic chemists working with organometallics, Rhodium Catalysis in Organic Synthesis contains the most recent information available on the developments and applications in the field of catalytic cyclization reactions using rhodium complexes. <br>
<p>Preface xv</p> <p><b>Part I Rhodium(I) Catalysis </b><b>1</b></p> <p><b>1 Rhodium(I)-Catalyzed Asymmetric Hydrogenation </b><b>3<br /></b><i>Tsuneo Imamoto</i></p> <p>1.1 Introduction 3</p> <p>1.2 Chiral Phosphorus Ligands 3</p> <p>1.2.1 P-Chirogenic Bisphosphine Ligands 4</p> <p>1.2.1.1 Electron-Rich C2 Symmetric Ligands 4</p> <p>1.2.1.2 Three-Hindered Quadrant Ligands 5</p> <p>1.2.1.3 Ligands Bearing Two or Three Aryl Groups at the Phosphorus Atom 5</p> <p>1.2.2 DuPhos, BPE, and Analogous Ligands 6</p> <p>1.2.3 Ferrocene-Based Bisphosphine Ligands 7</p> <p>1.2.4 C2 Symmetric Triaryl- or Diarylphosphine Ligands with Axial Chirality 9</p> <p>1.2.5 Phosphine–Phosphite and Phosphine–Phosphoramide Ligands 9</p> <p>1.2.6 Other Bidentate Ligands 9</p> <p>1.2.7 Monodentate Phosphorus Ligands 11</p> <p>1.3 Application of Chiral Phosphorus Ligands in Rhodium-Catalyzed Asymmetric Hydrogenation 12</p> <p>1.3.1 Hydrogenation of Alkenes 12</p> <p>1.3.1.1 Hydrogenation of Enamides 12</p> <p>1.3.1.2 Hydrogenation of Enol Esters 18</p> <p>1.3.1.3 Hydrogenation of α,β-Unsaturated Acids, Esters, and Related Substrates 19</p> <p>1.3.1.4 Hydrogenation of Other Functionalized Alkenes 21</p> <p>1.3.1.5 Hydrogenation of Unfunctionalized Alkenes 24</p> <p>1.3.1.6 Hydrogenation of Heteroarenes 24</p> <p>1.3.2 Hydrogenation of Ketones 25</p> <p>1.3.3 Hydrogenation of Imines, Oximes, and Hydrazones 26</p> <p>1.4 EnantioselectionMechanism of Rhodium-Catalyzed Asymmetric Hydrogenation 27</p> <p>1.5 Conclusion 28</p> <p>References 29</p> <p><b>2 Rhodium(I)-Catalyzed Hydroboration and Diboration </b><b>39<br /></b><i>Kohei Endo</i></p> <p>2.1 Introduction 39</p> <p>2.2 Hydroboration of Alkenes 39</p> <p>2.2.1 Development of Catalyst Systems 39</p> <p>2.2.2 Enantioselective Reactions 41</p> <p>2.2.3 Hydroboration of FunctionalizedMolecules 44</p> <p>2.3 Diboration 45</p> <p>2.3.1 1,1-Diboration Reactions 45</p> <p>2.3.2 1,2-Diboration Reactions 45</p> <p>2.4 Conclusion 46</p> <p>References 47</p> <p><b>3 Rhodium(I)-Catalyzed Hydroformylation and Hydroamination </b><b>49<br /></b><i>Zhiwei Chen and VyM. Dong</i></p> <p>3.1 Introduction 49</p> <p>3.2 Rhodium(I)-Catalyzed Hydroformylation 49</p> <p>3.2.1 Asymmetric Hydroformylation of Challenging Substrates 49</p> <p>3.2.2 Transfer Hydroformylation 50</p> <p>3.3 Rhodium(I)-Catalyzed Hydroamination 54</p> <p>3.3.1 Asymmetric Rhodium(I)-Catalyzed Hydroamination 54</p> <p>3.3.2 Anti-Markovnikov Rhodium(I)-Catalyzed Hydroamination 56</p> <p>3.4 Conclusion 59</p> <p>References 61</p> <p><b>4 Rhodium(I)-Catalyzed Hydroacylation </b><b>63<br /></b><i>Maitane Fernández andMichael C.Willis</i></p> <p>4.1 Introduction 63</p> <p>4.2 Rhodium(I)-Catalyzed Intramolecular Hydroacylation 63</p> <p>4.2.1 Small Ring Synthesis: Five-Membered Rings 63</p> <p>4.2.2 Larger Ring Synthesis: Six-, Seven-, and Eight-Membered Rings 66</p> <p>4.3 Rhodium(I)-Catalyzed Intermolecular Hydroacylation 68</p> <p>4.3.1 N-Based Chelation Control 69</p> <p>4.3.2 O-Based Chelation Control 70</p> <p>4.3.3 S-Based Chelation Control 73</p> <p>4.3.4 C=O as a Directing Group for Hydroacylation 79</p> <p>4.4 Conclusion 81</p> <p>References 81</p> <p><b>5 Rhodium(I)-Catalyzed Asymmetric Addition of Organometallic Reagents to Unsaturated Compounds </b><b>85<br /></b><i>Hsyueh-LiangWu and Ping-YuWu</i></p> <p>5.1 Introduction 85</p> <p>5.2 α,β-Unsaturated Ketones 85</p> <p>5.2.1 Chiral Phosphorus Ligands 85</p> <p>5.2.2 Chiral Diene Ligands 89</p> <p>5.2.3 Chiral Bis-sulfoxide Ligands 92</p> <p>5.2.4 Chiral Hybrid Ligands 92</p> <p>5.3 α,β-Unsaturated Aldehydes 95</p> <p>5.4 α,β-Unsaturated Esters 98</p> <p>5.5 α,β-Unsaturated Amides 102</p> <p>5.6 α,β-Unsaturated Phosphonates 105</p> <p>5.7 α,β-Unsaturated Sulfonyl Compounds 105</p> <p>5.8 Nitroolefin Compounds 107</p> <p>5.9 Alkenylheteroarene and Alkenylarene Compounds 111</p> <p>5.10 Conclusion 111</p> <p>References 112</p> <p><b>6 Rhodium(I)-Catalyzed Allylation with Alkynes and Allenes </b><b>117<br /></b><i>Adrian B. Pritzius and Bernhard Breit</i></p> <p>6.1 Introduction 117</p> <p>6.2 Rh(I)-Catalyzed Addition of O-Nucleophiles 117</p> <p>6.3 Rh(I)-Catalyzed Addition of S-Nucleophiles 123</p> <p>6.4 Rh(I)-Catalyzed Addition of N-Nucleophiles 124</p> <p>6.5 Rh(I)-Catalyzed Addition of C-Nucleophiles 127</p> <p>6.6 Application of Rhodium-Catalyzed Addition in Total Synthesis 127</p> <p>6.7 Conclusion 129</p> <p>References 130</p> <p><b>7 Rhodium(I)-Catalyzed Reductive Carbon–Carbon Bond Formation </b><b>133<br /></b><i>Adam D. J. Calow and John F. Bower</i></p> <p>7.1 Introduction 133</p> <p>7.2 Hydroformylation 133</p> <p>7.2.1 Directed Rh-Catalyzed Hydroformylation 134</p> <p>7.2.2 Reversibly Bound Directing Groups in Rh-Catalyzed Hydroformylation 135</p> <p>7.3 Reductive C—C Bond Formation Between Electron-Deficient Alkenes and Carbonyls or Imines 137</p> <p>7.3.1 Reductive Aldol Reactions 137</p> <p>7.3.2 Reductive Mannich Reactions 142</p> <p>7.4 Reductive C—C Bond Formation Between Less Polarized Carbon-Based π-Unsaturated Systems and Carbonyls, Imines, or Anhydrides 144</p> <p>7.4.1 Reductive C—C Bond Formations Between Alkenes and Carbonyls,Imines, or Anhydrides 144</p> <p>7.4.2 Reductive C—C Bond Formations Between Alkynes and Carbonyls or Imines 146</p> <p>7.4.3 Miscellaneous Processes 150</p> <p>7.5 Reductive C—C Bond Formation Between Carbon-Based π-Unsaturated Systems 151</p> <p>7.5.1 C—C Bond-Forming Reactions Between Alkenes and Alkynes 151</p> <p>7.5.2 C—C Bond-Forming Reactions Between Alkynes and Alkynes 154</p> <p>7.6 Conclusions 156</p> <p>References 156</p> <p><b>8 Rhodium(I)-Catalyzed [2</b><b>+</b><b>2</b><b>+</b><b>1] and [4</b><b>+</b><b>1] Cycloadditions </b><b>161<br /></b><i>TsumoruMorimoto</i></p> <p>8.1 Introduction 161</p> <p>8.2 [2+2+1] Cycloaddition 161</p> <p>8.2.1 [2+2+1] Cycloaddition of an Alkyne, an Alkene, and CO (Pauson–Khand-Type Reaction) 161</p> <p>8.2.1.1 Pauson–Khand-Type Reaction Using Aldehydes as a C1 Component 162</p> <p>8.2.1.2 Pauson–Khand-Type Reaction Using Formates as a C1 Component 171</p> <p>8.2.1.3 Pauson–Khand-Type Reaction Using Oxalic Acid as a C1 Component 171</p> <p>8.2.1.4 Pauson–Khand-Type Reaction Using Supported Carbon Monoxide 172</p> <p>8.2.2 [2+2+1] Cycloaddition of Two Alkynes and CO 172</p> <p>8.2.3 Carbonylative [2+2+1] Cycloaddition Including hetero-Multiple Bonds 174</p> <p>8.3 [4+1] Cycloaddition 176</p> <p>8.3.1 Cycloaddition of All Carbon 4π-Conjugated Systems with CO 176</p> <p>8.3.2 Cycloaddition of 4π-Conjugated Systems Including Nitrogen Atom 178</p> <p>8.4 Conclusion 179</p> <p>References 179</p> <p><b>9 Rhodium(I)-Catalyzed [2</b><b>+</b><b>2</b><b>+</b><b>2] and [4</b><b>+</b><b>2] Cycloadditions </b><b>183<br /></b><i>Yu Shibata and Ken Tanaka</i></p> <p>9.1 Introduction 183</p> <p>9.2 [2+2+2] Cycloaddition 183</p> <p>9.2.1 [2+2+2] Cycloaddition of Alkynes 184</p> <p>9.2.2 [2+2+2] Cycloaddition of Alkynes with Nitriles 199</p> <p>9.2.3 [2+2+2] Cycloaddition of Alkynes with Heterocumulenes 200</p> <p>9.2.4 [2+2+2] Cycloaddition of Alkynes with Alkenes 207</p> <p>9.2.5 [2+2+2] Cycloaddition of Alkynes with Carbonyl Compounds and Imines 211</p> <p>9.3 [4+2] Cycloaddition 214</p> <p>9.3.1 [4+2] Cycloaddition of Alkynes with 1,3-Dienes 215</p> <p>9.3.2 [4+2] Cycloaddition via C—H Bond Cleavage 218</p> <p>9.4 Conclusion 222</p> <p>References 225</p> <p><b>10 Rhodium(I)-Catalyzed Cycloadditions Involving Vinylcyclopropanes and Their Derivatives </b><b>229<br /></b><i>Xing Fan, Cheng-Hang Liu, and Zhi-Xiang Yu</i></p> <p>10.1 Introduction 229</p> <p>10.2 VCP Isomerization Catalyzed by Rh(I) 230</p> <p>10.3 Cycloaddition Reactions Using VCPs 5C Synthon 231</p> <p>10.3.1 [5+1] cycloadditions of VCPs and CO 231</p> <p>10.3.2 [5+1] Cycloaddition Reactions of VCP Derivatives and CO 233</p> <p>10.3.3 Intermolecular [5+2] Cycloaddition Reactions 237</p> <p>10.3.4 Intramolecular [5+2] Cycloaddition Reactions 239</p> <p>10.3.5 [5+2] Cycloaddition Reactions of VCP Derivatives with 2π Components 245</p> <p>10.3.6 [5+2+1] and [5+1+2+1] Cycloaddition Reactions 251</p> <p>10.4 Cycloaddition Reactions Using VCPs 3C Synthon 255</p> <p>10.4.1 [3+2] Cycloaddition Reactions of VCPs 255</p> <p>10.4.2 [3+2] Cycloaddition Reactions of VCP Derivatives and 2π-Components 261</p> <p>10.4.3 [3+2+1] Cycloaddition Reactions 262</p> <p>10.4.4 [3+4] and [3+3] Cycloaddition Reactions of Vinylaziridines 264</p> <p>10.5 Miscellaneous Cycloaddition 266</p> <p>10.5.1 [7+1] Cycloaddition of Buta-1,3-dienylcyclopropanes 266</p> <p>10.5.2 Intramolecular Reactions of ACPs and 2π-Synthon 266</p> <p>10.5.3 Intramolecular Hydroacylation of VCPs 268</p> <p>10.6 Conclusion 270</p> <p>Acknowledgments 270</p> <p>References 271</p> <p><b>11 Rhodium(I)-Catalyzed Reactions via Carbon–Hydrogen Bond Cleavage </b><b>277<br /></b><i>Takanori Shibata</i></p> <p>11.1 Introduction 277</p> <p>11.2 C–H Arylation 277</p> <p>11.3 C–H Alkylation 279</p> <p>11.3.1 Directed C–H Alkylation by Alkenes 279</p> <p>11.3.2 Undirected C–H Alkylation by Alkene 281</p> <p>11.4 C–H Alkenylation 283</p> <p>11.5 Tandem Reaction Initiated by C–H Activation 285</p> <p>11.6 C–H Borylation 287</p> <p>11.7 Undirected Dehydrogenative C–H/Si–H Coupling 290</p> <p>11.8 Conclusion 295</p> <p>References 295</p> <p><b>12 Rhodium(I)-Catalyzed Reactions via Carbon–Carbon Bond Cleavage </b><b>299<br /></b><i>Masahiro Murakami and Naoki Ishida</i></p> <p>12.1 Introduction 299</p> <p>12.2 Reactions of Cyclopropanes and Cyclobutanes 299</p> <p>12.3 Reactions via Cleavage of C(Carbonyl)<b>—</b>C Bonds 310</p> <p>12.4 Reactions via Directing Group-Assisted C<b>—</b>C Bond Cleavage 315</p> <p>12.5 Reactions of Alcohols via C<b>—</b>C Bond Cleavage 323</p> <p>12.6 Reactions via Cleavage of C<b>—</b>CN Bond 330</p> <p>12.7 Reactions via Decarbonylation of Aldehydes and Carboxylic Acid  Derivatives 332</p> <p>12.8 Conclusion 333</p> <p>References 334</p> <p><b>Part II Rhodium(II) Catalysis </b><b>341</b></p> <p><b>13 Rhodium(II) Tetracarboxylate-Catalyzed Enantioselective C–H Functionalization Reactions </b><b>343<br /></b><i>Sidney M.Wilkerson-Hill and Huw M. L. Davies</i></p> <p>13.1 Introduction 343</p> <p>13.2 Mechanistic Insights and General Considerations 344</p> <p>13.3 Development of Rh2(S-DOSP)4 as a Chiral Catalyst for C–H Functionalization 347</p> <p>13.4 Combined C–H Functionalization/Cope Rearrangement 350</p> <p>13.5 Phthalimido Amino Acid-Derived Catalysts for Intramolecular C–H Functionalization 353</p> <p>13.6 Development of Triarylcyclopropane Carboxylate Rh(II) Complexes for Catalyst-Controlled Site-Selective C–H Functionalization 359</p> <p>13.7 Emerging Chiral Dirhodium Catalyst for Enantioselective C–H Functionalization 364</p> <p>13.8 New Paradigms in the Logic of Chemical Synthesis 365</p> <p>13.9 Conclusion 368</p> <p>Acknowledgments 369</p> <p>References 369</p> <p><b>14 Rhodium(II)-Catalyzed Nitrogen-Atom Transfer for Oxidation of Aliphatic C—H Bonds </b><b>373<br /></b><i>TomG. Driver</i></p> <p>14.1 Introduction 373</p> <p>14.2 Mechanism-Inspired Development of New Rh2(II) Catalysts 374</p> <p>14.2.1 Mechanism of Intramolecular Rh2(II)-Catalyzed C—H Bond Amination 374</p> <p>14.2.2 Tetradentate Carboxylate Ligands for Bimetallic Rhodium(II) Complexes 375</p> <p>14.2.3 Design, Synthesis, and Performance of Rh2 II,III Complexes 381</p> <p>14.3 The Development of New Intramolecular Rh2(II)-Catalyzed sp3-C<b>—</b>H Bond Amination 383</p> <p>14.3.1 C<b>—</b>H Bond Amination of Ethereal Bonds 383</p> <p>14.3.2 The Use of Rh2(II)-Catalyzed C<b>—</b>H Bond Amination to Create Glycans and Glycosides 385</p> <p>14.3.3 C<b>—</b>H Bond Amination of MIDA Boronates 386</p> <p>14.3.4 Formation of Medium-Ring N-HeterocyclesThrough C<b>—</b>H Bond Amination 387</p> <p>14.3.5 Synthesis of Spiroaminal Scaffolds 387</p> <p>14.3.6 Expanding the Scope of C<b>—</b>H Bond Amination with New NH2-Based N<b>-</b>Atom Precursors 389</p> <p>14.3.7 N-Tosylcarbamate N-Atom Precursors in Rh<b>2</b>(II)-Catalyzed C<b>—</b>H Bond Amination Reactions 394</p> <p>14.3.8 Aryl Azide N-Atom Precursors in Rh2(II)-Catalyzed sp3-C<b>—</b>H Bond Amination Reactions 398</p> <p>14.4 Intermolecular Rh2(II)-Catalyzed sp3-C<b>—</b>H Bond Amination Using an Iodine(III) Oxidant to Generate the Nitrene 400</p> <p>14.4.1 Intermolecular C<b>—</b>H Bond Amination of Activated C<b>—</b>H Bonds 400</p> <p>14.5 Non-Oxidatively Generated Nitrenes in Intermolecular Rh2(II)-Catalyzed sp3-C<b>—</b>H Bond Amination 411</p> <p>14.5.1 N-Tosylcarbamates as the Nitrogen-Atom Precursor in Intermolecular sp3-C<b>—</b>H Bond Amination Processes 411</p> <p>14.5.2 Azides as the Nitrogen-Atom Precursor in Intermolecular sp3-C<b>—</b>H Bond Amination Reactions 414</p> <p>14.6 Diastereoselective Rh2(II)-Catalyzed sp3-C—H Bond Amination Using Chiral, Non-racemic Nitrogen-Atom Precursors 416</p> <p>14.6.1 Intermolecular Diastereoselective C—H Bond Amination Using Sulfonimidamides 416</p> <p>14.6.2 Intermolecular Diastereoselective C<b>—</b>H Bond Amination Using N-Tosylcarbamates 422</p> <p>14.7 Enantioselective Rh2(II)-Catalyzed sp3-C<b>—</b>H Bond Amination 422</p> <p>14.7.1 Intramolecular Asymmetric C<b>—</b>H Bond Amination 422</p> <p>14.8 Conclusion 429</p> <p>References 430</p> <p><b>15 Rhodium(II)-Catalyzed Cyclopropanation </b><b>433<br /></b><i>Vincent N.G. Lindsay</i></p> <p>15.1 Introduction 433</p> <p>15.1.1 Mechanistic Considerations 434</p> <p>15.2 Intermolecular Cyclopropanation of Alkenes 436</p> <p>15.2.1 Via Rhodium(II) Carbenes Bearing One Electron-Withdrawing Group (Acceptor Carbenes) 438</p> <p>15.2.2 Via Rhodium(II) Carbenes Bearing One Electron-Withdrawing Group and One Electron-Donating Group (Donor–Acceptor Carbenes) 440</p> <p>15.2.3 Via Rhodium(II) Carbenes Bearing Two Electron-Withdrawing Groups (Acceptor–Acceptor Carbenes) 441</p> <p>15.3 Intramolecular Cyclopropanation of Alkenes 443</p> <p>15.4 Cyclopropanation of Poorly Nucleophilic 𝜋-Systems: Alkynes, Arenes, and Allenes as Substrates 444</p> <p>15.5 Conclusion 445</p> <p>References 445</p> <p><b>16 Reactions of </b><b>𝛂</b><b>-Imino Rhodium(II) Carbene Complexes Generated from</b><b>N</b><b>-Sulfonyl-1,2,3-Triazoles </b><b>449<br /></b><i>TomoyaMiura and Masahiro Murakami</i></p> <p>16.1 Introduction 449</p> <p>16.2 Synthesis of N-Sulfonyl-1,2,3-Triazoles 451</p> <p>16.3 Reactions of Carbon Nucleophiles with α-Imino Rhodium(II) Carbene Complexes 451</p> <p>16.4 Reactions of Oxygen and Sulfur Nucleophiles with α-Imino Rhodium(II) Carbene Complexes 458</p> <p>16.5 Reactions of Nitrogen Nucleophiles with α-Imino Rhodium(II) Carbene Complexes 464</p> <p>16.6 Conclusion 466</p> <p>References 467</p> <p><b>17 Rhodium(II)-Catalyzed 1,3- and 1,5-Dipolar Cycloaddition </b><b>471<br /></b><i>Nirupam De, Donguk Ko, and Eun Jeong Yoo</i></p> <p>17.1 Introduction 471</p> <p>17.2 1,3<b>-</b>Dipolar Cycloadditions of Carbonyl Ylides 471</p> <p>17.2.1 [3+2] Cycloadditions of Carbonyl Ylides and Dipolarophiles 471</p> <p>17.2.2 Chemoselective [3+2] Cycloadditions of Carbonyl Ylides 475</p> <p>17.2.3 Applications to Natural Product Synthesis 476</p> <p>17.3 1,3-Dipolar Cycloadditions of Azomethine Ylides 478</p> <p>17.4 1,3-Dipolar Cycloadditions of Enoldiazo Compounds 479</p> <p>17.5 1,5-Dipolar Cycloadditions of Pyridinium Zwitterions 482</p> <p>17.6 Conclusion 484</p> <p>References 484</p> <p><b>Part III Rhodium(III) Catalysis </b><b>487</b></p> <p><b>18 Rhodium(III)-Catalyzed Annulative Carbon–Hydrogen Bond Functionalization </b><b>489<br /></b><i>Tetsuya Satoh andMasahiroMiura</i></p> <p>18.1 Introduction 489</p> <p>18.2 Type A Annulation 490</p> <p>18.2.1 Annulation Utilizing Oxygen-containing Directing Group 490</p> <p>18.2.2 Annulation Utilizing Nitrogen-containing Directing Group 492</p> <p>18.2.3 Annulation Utilizing Sulfur-containing Directing Group 504</p> <p>18.2.4 Annulation Utilizing Phosphorus-containing Directing Group 506</p> <p>18.3 Type B Annulation 508</p> <p>18.4 Type C Annulation 510</p> <p>18.5 Type D Cyclization 515</p> <p>18.6 Conclusion 516</p> <p>References 517</p> <p><b>19 Rhodium(III)-Catalyzed Non-annulative Carbon–Hydrogen Bond Functionalization </b><b>521<br /></b><i>Fang Xie and Xingwei Li</i></p> <p>19.1 Introduction 521</p> <p>19.2 Alkenylation and Arylation 522</p> <p>19.2.1 Rh(III)-Catalyzed Non-annulative C—H Alkenylation 522</p> <p>19.2.1.1 Oxidative Dehydrogenative Alkenylation Reactions 522</p> <p>19.2.1.2 Redox-Neutral Alkenylation with Internal Oxidizing Ability 523</p> <p>19.2.1.3 Alkenylations from Alkynes 525</p> <p>19.2.2 Rh(III)-Catalyzed Non-annulative C—H Arylation 529</p> <p>19.2.2.1 Non-annulative Oxidative Dehydrogenative Arylation 529</p> <p>19.2.2.2 Other Types of C–H Arylation 533</p> <p>19.3 Alkynylation 540</p> <p>19.3.1 Rh(III)-Catalyzed Non-annulative C—H Alkynylation 540</p> <p>19.4 Alkylation 541</p> <p>19.4.1 Rh(III)-Catalyzed Non-annulative C—H Couplings with Diazo Compounds 541</p> <p>19.4.2 Rh(III)-Catalyzed Non-annulative Allylations 543</p> <p>19.4.3 Rh(III)-Catalyzed Non-annulative Alkylations Through Addition of C—H Bond to C=X (X =C, O, N) Bonds 552</p> <p>19.4.3.1 Addition of C—H Bond to C=C Bond 552</p> <p>19.4.3.2 Addition of C<b>—</b>H Bond to C=O Bond 555</p> <p>19.4.3.3 Addition of C<b>—</b>H Bond to C=N Bond 558</p> <p>19.4.4 Rh(III)-Catalyzed Non-annulative Alkylations Through Opening Strained Rings 560</p> <p>19.4.5 Rh(III)-Catalyzed Non-annulative Alkylations Through Transmetalation 563</p> <p>19.5 C<b>—</b>N Bond Formation 564</p> <p>19.5.1 Rh(III)-Catalyzed Non-annulative Aminations 564</p> <p>19.5.2 Rh(III)-Catalyzed Non-annulative Amidations 569</p> <p>19.6 Introduction of C=O Bond 577</p> <p>19.6.1 Rh(III)-Catalyzed Non-annulative Acylations 577</p> <p>19.6.2 Rh(III)-Catalyzed Non-annulative Amidations 579</p> <p>19.7 Cyanation 579</p> <p>19.8 C<b>—</b>O Bond Formation 580</p> <p>19.9 C<b>—</b>X Bond Formation 581</p> <p>19.9.1 Non-annulative Halogenation of Arenes 581</p> <p>19.9.2 C—H Hyperiodination of Arenes 583</p> <p>19.10 Non-annulative Thiolation of Arenes 585</p> <p>19.11 C<b>—</b>Se Bond Formation 585</p> <p>19.12 Conclusion 586</p> <p>References 587</p> <p><b>20 Sterically and Electronically Tuned Cp Ligands for Rhodium(III)-Catalyzed Carbon–Hydrogen Bond </b><b>Functionalization </b><b>593<br /></b><i>Fedor Romanov-Michailidis, Erik J.T. Phipps, and Tomislav Rovis</i></p> <p>20.1 Introduction 593</p> <p>20.2 QuantitativeModels for Steric and Electronic Parameterization of Cp Ligands on Rhodium(III) 594</p> <p>20.3 Sterically Tuned Cp Ligands 598</p> <p>20.3.1 Earlier Results 598</p> <p>20.3.2 Synthesis of Isoquinolones, Pyridones, and Derivatives 599</p> <p>20.3.3 Synthesis of Pyridines 607</p> <p>20.3.4 Cyclopropanation and Carboamination Reactions 607</p> <p>20.4 Electronically Tuned Cp Ligands 612</p> <p>20.4.1 Synthesis of Pyridines and Derivatives 612</p> <p>20.4.2 Tanaka’s Ethoxycarbonyl-Substituted Cyclopentadienyl Ligand (CpE) 615</p> <p>20.5 Conclusion 626</p> <p>References 626</p> <p><b>21 Chiral Cp Ligands for Rhodium(III)-Catalyzed Asymmetric Carbon–Hydrogen Bond Functionalization </b><b>629<br /></b><i>Christopher G. Newton and Nicolai Cramer</i></p> <p>21.1 Introduction 629</p> <p>21.2 SeminalWork 629</p> <p>21.3 The Ligands 630</p> <p>21.3.1 Development 630</p> <p>21.3.2 Established Families 631</p> <p>21.3.3 Complexation Methods 633</p> <p>21.4 Applications 634</p> <p>21.4.1 Introduction 634</p> <p>21.4.2 Hydroxamate Directing Groups 634</p> <p>21.4.3 Pyridyl Directing Groups 638</p> <p>21.4.4 Hydroxy Directing Groups 639</p> <p>21.4.5 Other Directing Groups 641</p> <p>21.5 Conclusion 642</p> <p>References 642</p> <p>Index 645</p>
<p><b><i>Ken Tanaka</i></b> <i>is a Professor of Applied Chemistry in the Department of Chemical Science and Engineering at the Tokyo Institute of Technology. Since the start of his academic career in 2003, he has published over 190 scientific papers and one book. His research focuses on organometallic chemistry directed toward organic synthesis.</i>
<p><b>An essential reference to the highly effective reactions applied to modern organic synthesis</b> <p><b>R</b>hodium complexes are one of the most important transition metals for organic synthesis due to their ability to catalyze a variety of useful transformations. <i>Rhodium Catalysis in Organic Synthesis: Methods and Reactions</i> explores the most recent progress and new developments particularly in the field of catalytic cyclization reactions using rhodium(I) complexes and catalytic carbon-hydrogen bond activation reactions using rhodium(II) and rhodium(III) complexes. <p>Edited by a noted expert in the field with contributions from a panel of leading international scientists, <i>Rhodium Catalysis in Organic Synthesis: Methods and Reactions</i> presents the essential information in one comprehensive volume. Designed to be an accessible resource, the book is arranged by different reaction types. All the chapters provide insight into each transformation and include information on the history, selectivity, scope, mechanism, and application. In addition, the chapters offer a summary and outlook of each transformation. This important resource: <ul> <li>Offers a comprehensive review of how rhodium complexes catalyze a variety of highly useful reactions for organic synthesis (e.g. coupling reactions, CH-bond functionalization, hydroformylation, cyclization reactions and others)</li> <li>Includes information on the most recent developments that contain a range of new, efficient, elegant, reliable and useful reactions</li> <li>Presents a volume edited by one of the international leading scientists working in the field today</li> <li>Contains the information that can be applied by researchers in academia and also professionals in pharmaceutical, agrochemical and fine chemical companies</li> </ul> <p>Written for academics and synthetic chemists working with organometallics, <i>Rhodium Catalysis in Organic Synthesis: Methods and Reactions</i> contains the most recent information available on the developments and applications in the field of catalytic cyclization reactions using rhodium complexes.

Diese Produkte könnten Sie auch interessieren:

Oxidation of Alcohols to Aldehydes and Ketones
Oxidation of Alcohols to Aldehydes and Ketones
von: Gabriel Tojo, Marcos I. Fernandez
PDF ebook
96,29 €
Metal-Catalysed Reactions of Hydrocarbons
Metal-Catalysed Reactions of Hydrocarbons
von: Geoffrey C. Bond
PDF ebook
96,29 €