Details

X-Ray Fluorescence Spectroscopy for Laboratory Applications


X-Ray Fluorescence Spectroscopy for Laboratory Applications


1. Aufl.

von: Michael Haschke, Jörg Flock, Michael Haller

129,99 €

Verlag: Wiley-VCH
Format: EPUB
Veröffentl.: 18.01.2021
ISBN/EAN: 9783527816620
Sprache: englisch
Anzahl Seiten: 496

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>Provides comprehensive coverage on using X-ray fluorescence for laboratory applications</b></p> <p>This book focuses on the practical aspects of X-ray fluorescence (XRF) spectroscopy and discusses the requirements for a successful sample analysis, such as sample preparation, measurement techniques and calibration, as well as the quality of the analysis results.</p> <p><i>X-Ray Fluorescence Spectroscopy for Laboratory Applications</i> begins with a short overview of the physical fundamentals of the generation of X-rays and their interaction with the sample material, followed by a presentation of the different methods of sample preparation in dependence on the quality of the source material and the objective of the measurement. After a short description of the different available equipment types and their respective performance, the book provides in-depth information on the choice of the optimal measurement conditions and the processing of the measurement results. It covers instrument types for XRF; acquisition and evaluation of X-Ray spectra; analytical errors; analysis of homogeneous materials, powders, and liquids; special applications of XRF; process control and automation.</p> <ul> <li>An important resource for the analytical chemist, providing concrete guidelines and support for everyday analyses</li> <li>Focuses on daily laboratory work with commercially available devices</li> <li>Offers a unique compilation of knowledge and best practices from equipment manufacturers and users</li> <li>Covers the entire work process: sample preparation, the actual measurement, data processing, assessment of uncertainty, and accuracy of the obtained results</li> </ul> <p><i>X-Ray Fluorescence Spectroscopy for Laboratory Applications</i> appeals to analytical chemists, analytical laboratories, materials scientists, environmental chemists, chemical engineers, biotechnologists, and pharma engineers.</p>
<p>Preface xvii</p> <p>List of Abbreviations and Symbols xix</p> <p>About the Authors xxiii</p> <p><b>1 Introduction </b><b>1</b></p> <p><b>2 Principles of X-ray Spectrometry </b><b>7</b></p> <p>2.1 Analytical Performance 7</p> <p>2.2 X-ray Radiation and Their Interaction 11</p> <p>2.2.1 Parts of an X-ray Spectrum 11</p> <p>2.2.2 Intensity of the Characteristic Radiation 13</p> <p>2.2.3 Nomenclature of X-ray Lines 15</p> <p>2.2.4 Interaction of X-rays with Matter 15</p> <p>2.2.4.1 Absorption 16</p> <p>2.2.4.2 Scattering 17</p> <p>2.2.5 Detection of X-ray Spectra 20</p> <p>2.3 The Development of X-ray Spectrometry 21</p> <p>2.4 Carrying Out an Analysis 26</p> <p>2.4.1 Analysis Method 26</p> <p>2.4.2 Sequence of an Analysis 27</p> <p>2.4.2.1 Quality of the Sample Material 27</p> <p>2.4.2.2 Sample Preparation 27</p> <p>2.4.2.3 Analysis Task 28</p> <p>2.4.2.4 Measurement and Evaluation of the Measurement Data 28</p> <p>2.4.2.5 Creation of an Analysis Report 29</p> <p><b>3 Sample Preparation </b><b>31</b></p> <p>3.1 Objectives of Sample Preparation 31</p> <p>3.2 Preparation Techniques 32</p> <p>3.2.1 Preparation Techniques for Solid Samples 32</p> <p>3.2.2 Information Depth and Analyzed Volume 32</p> <p>3.2.3 Infinite Thickness 36</p> <p>3.2.4 Contaminations 37</p> <p>3.2.5 Homogeneity 38</p> <p>3.3 Preparation of Compact and Homogeneous Materials 39</p> <p>3.3.1 Metals 39</p> <p>3.3.2 Glasses 40</p> <p>3.4 Small Parts Materials 41</p> <p>3.4.1 Grinding of Small Parts Material 42</p> <p>3.4.2 Preparation by Pouring Loose Powder into a Sample Cup 43</p> <p>3.4.3 Preparation of the Measurement Sample by Pressing into a Pellet 44</p> <p>3.4.4 Preparation of the Sample by Fusion Beads 48</p> <p>3.4.4.1 Improving the Quality of the Analysis 48</p> <p>3.4.4.2 Steps for the Production of Fusion Beads 49</p> <p>3.4.4.3 Loss of Ignition 53</p> <p>3.4.4.4 Quality Criteria for Fusion Beads 53</p> <p>3.4.4.5 Preparation of Special Materials 54</p> <p>3.5 Liquid Samples 55</p> <p>3.5.1 Direct Measurement of Liquids 55</p> <p>3.5.2 Special Processing Procedures for Liquid Samples 58</p> <p>3.6 Biological Materials 58</p> <p>3.7 Small Particles, Dust, and Aerosols 59</p> <p><b>4 XRF Instrument Types </b><b>61</b></p> <p>4.1 General Design of an X-ray Spectrometer 61</p> <p>4.2 Comparison of Wavelength- and Energy-Dispersive X-Ray Spectrometers 63</p> <p>4.2.1 Data Acquisition 63</p> <p>4.2.2 Resolution 64</p> <p>4.2.2.1 Comparison of Wavelength- and Energy-Dispersive Spectrometry 64</p> <p>4.2.2.2 Resolution of WDS Instruments 66</p> <p>4.2.2.3 Resolution of EDS Instruments 68</p> <p>4.2.3 Detection Efficiency 70</p> <p>4.2.4 Count Rate Capability 71</p> <p>4.2.4.1 Optimum Throughput in ED Spectrometers 71</p> <p>4.2.4.2 Saturation Effects in WDSs 72</p> <p>4.2.4.3 Optimal Sensitivity of ED Spectrometers 73</p> <p>4.2.4.4 Effect of the Pulse Throughput on the Measuring Time 74</p> <p>4.2.5 Radiation Flux 75</p> <p>4.2.6 Spectra Artifacts 76</p> <p>4.2.6.1 Escape Peaks 76</p> <p>4.2.6.2 Pile-Up Peak 77</p> <p>4.2.6.3 Diffraction Peaks 77</p> <p>4.2.6.4 Shelf and Tail 79</p> <p>4.2.7 Mechanical Design and Operating Costs 79</p> <p>4.2.8 Setting Parameters 80</p> <p>4.3 Type of Instruments 80</p> <p>4.3.1 ED Instruments 81</p> <p>4.3.1.1 Handheld Instruments 82</p> <p>4.3.1.2 Portable Instruments 83</p> <p>4.3.1.3 Tabletop Instruments 84</p> <p>4.3.2 Wavelength-Dispersive Instruments 85</p> <p>4.3.2.1 Sequential Spectrometers 85</p> <p>4.3.2.2 Multichannel Spectrometers 87</p> <p>4.3.3 Special Type X-Ray Spectrometers 87</p> <p>4.3.3.1 Total Reflection Instruments 88</p> <p>4.3.3.2 Excitation by Monoenergetic Radiation 90</p> <p>4.3.3.3 Excitation with Polarized Radiation 91</p> <p>4.3.3.4 Instruments for Position-Sensitive Analysis 93</p> <p>4.3.3.5 Macro X-Ray Fluorescence Spectrometer 94</p> <p>4.3.3.6 Micro X-Ray Fluorescence with Confocal Geometry 95</p> <p>4.3.3.7 High-Resolution X-Ray Spectrometers 96</p> <p>4.3.3.8 Angle Resolved Spectroscopy – Grazing Incidence and Grazing Exit 96</p> <p>4.4 Commercially Available Instrument Types 98</p> <p><b>5 Measurement and Evaluation of X-ray Spectra </b><b>99</b></p> <p>5.1 Information Content of the Spectra 99</p> <p>5.2 Procedural Steps to Execute a Measurement 101</p> <p>5.3 Selecting the Measurement Conditions 102</p> <p>5.3.1 Optimization Criteria for the Measurement 102</p> <p>5.3.2 Tube Parameters 103</p> <p>5.3.2.1 Target Material 103</p> <p>5.3.2.2 Excitation Conditions 104</p> <p>5.3.2.3 Influencing the Energy Distribution of the Primary Spectrum 105</p> <p>5.3.3 Measurement Medium 107</p> <p>5.3.4 Measurement Time 108</p> <p>5.3.4.1 Measurement Time and Statistical Error 108</p> <p>5.3.4.2 Measurement Strategies 108</p> <p>5.3.4.3 Real and Live Time 109</p> <p>5.3.5 X-ray Lines 110</p> <p>5.4 Determination of Peak Intensity 112</p> <p>5.4.1 Intensity Data 112</p> <p>5.4.2 Treatment of Peak Overlaps 112</p> <p>5.4.3 Spectral Background 114</p> <p>5.5 Quantification Models 117</p> <p>5.5.1 General Remarks 117</p> <p>5.5.2 Conventional Calibration Models 118</p> <p>5.5.3 Fundamental Parameter Models 121</p> <p>5.5.4 Monte Carlo Quantifications 124</p> <p>5.5.5 Highly Precise Quantification by Reconstitution 124</p> <p>5.5.6 Evaluation of an Analytical Method 126</p> <p>5.5.6.1 Degree of Determination 126</p> <p>5.5.6.2 Working Range, Limits of Detection (LOD) and of Quantification 127</p> <p>5.5.6.3 Figure of Merit 129</p> <p>5.5.7 Comparison of the Various Quantification Models 129</p> <p>5.5.8 Available Reference Materials 131</p> <p>5.5.9 Obtainable Accuracies 132</p> <p>5.6 Characterization of Layered Materials 133</p> <p>5.6.1 General Form of the Calibration Curve 133</p> <p>5.6.2 Basic Conditions for Layer Analysis 135</p> <p>5.6.3 Quantification Models for the Analysis of Layers 138</p> <p>5.7 Chemometric Methods for Material Characterization 140</p> <p>5.7.1 Spectra Matching and Material Identification 141</p> <p>5.7.2 Phase Analysis 141</p> <p>5.7.3 Regression Methods 143</p> <p>5.8 Creation of an Application 143</p> <p>5.8.1 Analysis of Unknown Sample Qualities 143</p> <p>5.8.2 Repeated Analyses on Known Samples 144</p> <p><b>6 Analytical Errors </b><b>149</b></p> <p>6.1 General Considerations 149</p> <p>6.1.1 Precision of a Measurement 151</p> <p>6.1.2 Long-Term Stability of the Measurements 153</p> <p>6.1.3 Precision and Process Capability 154</p> <p>6.1.4 Trueness of the Result 156</p> <p>6.2 Types of Errors 156</p> <p>6.2.1 Randomly Distributed Errors 157</p> <p>6.2.2 Systematic Errors 158</p> <p>6.3 Accounting for Systematic Errors 159</p> <p>6.3.1 The Concept of Measurement Uncertainties 159</p> <p>6.3.2 Error Propagation 160</p> <p>6.3.3 Determination of Measurement Uncertainties 161</p> <p>6.3.3.1 Bottom-Up Method 161</p> <p>6.3.3.2 Top-Down Method 162</p> <p>6.4 Recording of Error Information 164</p> <p><b>7 Other Element Analytical Methods </b><b>167</b></p> <p>7.1 Overview 167</p> <p>7.2 Atomic Absorption Spectrometry (AAS) 168</p> <p>7.3 Optical Emission Spectrometry 169</p> <p>7.3.1 Excitation with a Spark Discharge (OES) 169</p> <p>7.3.2 Excitation in an Inductively Coupled Plasma (ICP-OES) 170</p> <p>7.3.3 Laser-Induced Breakdown Spectroscopy (LIBS) 171</p> <p>7.4 Mass Spectrometry (MS) 172</p> <p>7.5 X-Ray Spectrometry by Particle Excitation (SEM-EDS, PIXE) 173</p> <p>7.6 Comparison of Methods 175</p> <p><b>8 Radiation Protection </b><b>177</b></p> <p>8.1 Basic Principles 177</p> <p>8.2 Effects of Ionizing Radiation on Human Tissue 178</p> <p>8.3 Natural Radiation Exposure 179</p> <p>8.4 Radiation Protection Regulations 181</p> <p>8.4.1 Legal Regulations 181</p> <p><b>9 Analysis of Homogeneous Solid Samples </b><b>183</b></p> <p>9.1 Iron Alloys 183</p> <p>9.1.1 Analytical Problem and Sample Preparation 183</p> <p>9.1.2 Analysis of Pig and Cast Iron 184</p> <p>9.1.3 Analysis of Low-Alloy Steel 185</p> <p>9.1.4 Analysis of High-Alloy Steel 187</p> <p>9.2 Ni–Fe–Co Alloys 188</p> <p>9.3 Copper Alloys 189</p> <p>9.3.1 Analytical Task 189</p> <p>9.3.2 Analysis of Compact Samples 189</p> <p>9.3.3 Analysis of Dissolved Samples 189</p> <p>9.4 Aluminum Alloys 191</p> <p>9.5 Special Metals 192</p> <p>9.5.1 Refractories 192</p> <p>9.5.1.1 Analytical Problem 192</p> <p>9.5.1.2 Sample Preparation of Hard Metals 192</p> <p>9.5.1.3 Analysis of Hard Metals 193</p> <p>9.5.2 Titanium Alloys 194</p> <p>9.5.3 Solder Alloys 194</p> <p>9.6 Precious Metals 195</p> <p>9.6.1 Analysis of Precious Metal Jewelry 195</p> <p>9.6.1.1 Analytical Task 195</p> <p>9.6.1.2 Sample Shape and Preparation 196</p> <p>9.6.1.3 Analytical Equipment 197</p> <p>9.6.1.4 Accuracy of the Analysis 198</p> <p>9.6.2 Analysis of Pure Elements 198</p> <p>9.7 Glass Material 199</p> <p>9.7.1 Analytical Task 199</p> <p>9.7.2 Sample Preparation 200</p> <p>9.7.3 Measurement Equipment 202</p> <p>9.7.4 Achievable Accuracies 202</p> <p>9.8 Polymers 203</p> <p>9.8.1 Analytical Task 203</p> <p>9.8.2 Sample Preparation 204</p> <p>9.8.3 Instruments 205</p> <p>9.8.4 Quantification Procedures 205</p> <p>9.8.4.1 Standard-Based Methods 205</p> <p>9.8.4.2 Chemometric Methods 206</p> <p>9.9 Abrasion Analysis 209</p> <p><b>10 Analysis of Powder Samples </b><b>213</b></p> <p>10.1 Geological Samples 213</p> <p>10.1.1 Analytical Task 213</p> <p>10.1.2 Sample Preparation 214</p> <p>10.1.3 Measurement Technique 215</p> <p>10.1.4 Detection Limits and Trueness 215</p> <p>10.2 Ores 216</p> <p>10.2.1 Analytical Task 216</p> <p>10.2.2 Iron Ores 216</p> <p>10.2.3 Mn, Co, Ni, Cu, Zn, and Pb Ores 217</p> <p>10.2.4 Bauxite and Alumina 218</p> <p>10.2.5 Ores of Precious Metals and Rare Earths 219</p> <p>10.3 Soils and Sewage Sludges 221</p> <p>10.3.1 Analytical Task 221</p> <p>10.3.2 Sample Preparation 221</p> <p>10.3.3 Measurement Technology and Analytical Performance 222</p> <p>10.4 Quartz Sand 223</p> <p>10.5 Cement 223</p> <p>10.5.1 Analytical Task 223</p> <p>10.5.2 Sample Preparation 224</p> <p>10.5.3 Measurement Technology 225</p> <p>10.5.4 Analytical Performance 226</p> <p>10.5.5 Determination of Free Lime in Clinker 227</p> <p>10.6 Coal and Coke 227</p> <p>10.6.1 Analytical Task 227</p> <p>10.6.2 Sample Preparation 228</p> <p>10.6.3 Measurement Technology and Analytical Performance 229</p> <p>10.7 Ferroalloys 230</p> <p>10.7.1 Analytical Task 230</p> <p>10.7.2 Sample Preparation 230</p> <p>10.7.3 Analysis Technology 232</p> <p>10.7.4 Analytical Performance 234</p> <p>10.8 Slags 235</p> <p>10.8.1 Analytical Task 235</p> <p>10.8.2 Sample Preparation 235</p> <p>10.8.3 Measurement Technology and Analytical Accuracy 236</p> <p>10.9 Ceramics and Refractory Materials 237</p> <p>10.9.1 Analytical Task 237</p> <p>10.9.2 Sample Preparation 237</p> <p>10.9.3 Measurement Technology and Analytical Performance 238</p> <p>10.10 Dusts 239</p> <p>10.10.1 Analytical Problem and Dust Collection 239</p> <p>10.10.2 Measurement 242</p> <p>10.11 Food 242</p> <p>10.11.1 Analytical Task 242</p> <p>10.11.2 Monitoring of Animal Feed 243</p> <p>10.11.3 Control of Infant Food 244</p> <p>10.12 Pharmaceuticals 245</p> <p>10.12.1 Analytical Task 245</p> <p>10.12.2 Sample Preparation and Analysis Method 245</p> <p>10.13 Secondary Fuels 246</p> <p>10.13.1 Analytical Task 246</p> <p>10.13.2 Sample Preparation 247</p> <p>10.13.2.1 Solid Secondary Raw Materials 247</p> <p>10.13.2.2 Liquid Secondary Raw Materials 249</p> <p>10.13.3 Instrumentation and Measurement Conditions 250</p> <p>10.13.4 Measurement Uncertainties in the Analysis of Solid Secondary Raw Materials 251</p> <p>10.13.5 Measurement Uncertainties for the Analysis of Liquid Secondary Raw Materials 252</p> <p><b>11 Analysis of Liquids </b><b>253</b></p> <p>11.1 Multielement Analysis of Liquids 254</p> <p>11.1.1 Analytical Task 254</p> <p>11.1.2 Sample Preparation 254</p> <p>11.1.3 Measurement Technology 254</p> <p>11.1.4 Quantification 255</p> <p>11.2 Fuels and Oils 255</p> <p>11.2.1 Analysis of Toxic Elements in Fuels 256</p> <p>11.2.1.1 Measurement Technology 256</p> <p>11.2.1.2 Analytical Performance 258</p> <p>11.2.2 Analysis of Additives in Lubricating Oils 258</p> <p>11.2.3 Identification of Abrasive Particles in Used Lubricants 260</p> <p>11.3 Trace Analysis in Liquids 261</p> <p>11.3.1 Analytical Task 261</p> <p>11.3.2 Preparation by Drying 261</p> <p>11.3.3 Quantification 262</p> <p>11.4 Special Preparation Techniques for Liquid Samples 263</p> <p>11.4.1 Determination of Light Elements in Liquids 263</p> <p>11.4.2 Enrichment Through Absorption and Complex Formation 264</p> <p><b>12 Trace Analysis Using Total Reflection X-Ray Fluorescence </b><b>267</b></p> <p>12.1 Special Features of TXRF 267</p> <p>12.2 Sample Preparation for TXRF 269</p> <p>12.3 Evaluation of the Spectra 271</p> <p>12.3.1 Spectrum Preparation and Quantification 271</p> <p>12.3.2 Conditions for Neglecting the Matrix Interaction 272</p> <p>12.3.3 Limits of Detection 273</p> <p>12.4 Typical Applications of the TXRF 274</p> <p>12.4.1 Analysis of Aqueous Solutions 274</p> <p>12.4.1.1 Analytical Problem and Preparation Possibilities 274</p> <p>12.4.1.2 Example: Analysis of a Fresh Water Standard Sample 275</p> <p>12.4.1.3 Example: Detection of Mercury in Water 277</p> <p>12.4.2 Analysis of the Smallest Sample Quantities 278</p> <p>12.4.2.1 Example: Pigment Analysis 278</p> <p>12.4.2.2 Example: Aerosol Analysis 279</p> <p>12.4.2.3 Example: Analysis of Nanoparticles 279</p> <p>12.4.3 Trace Element Analysis on Human Organs 280</p> <p>12.4.3.1 Example: Analysis of Blood and Blood Serum 280</p> <p>12.4.3.2 Example: Analysis of Trace Elements in Body Tissue 282</p> <p>12.4.4 Trace Analysis of Inorganic and Organic Chemical Products 283</p> <p>12.4.5 Analysis of Semiconductor Electronics 284</p> <p>12.4.5.1 Ultra-Trace Analysis on SiWafers with VPD 284</p> <p>12.4.5.2 Depth Profile Analysis by Etching 285</p> <p><b>13 Nonhomogeneous Samples </b><b>287</b></p> <p>13.1 Measurement Modes 287</p> <p>13.2 Instrument Requirements 288</p> <p>13.3 Data Evaluation 290</p> <p><b>14 Coating Analysis </b><b>291</b></p> <p>14.1 Analytical Task 291</p> <p>14.2 Sample Handling 292</p> <p>14.3 Measurement Technology 293</p> <p>14.4 The Analysis Examples of Coated Samples 294</p> <p>14.4.1 Single-Layer Systems: Emission Mode 294</p> <p>14.4.2 Single-Layer Systems: Absorption Mode 297</p> <p>14.4.3 Single-Layer Systems: Relative Mode 298</p> <p>14.4.3.1 Analytical Problem 298</p> <p>14.4.3.2 Variation of the Specified Working Distance 298</p> <p>14.4.3.3 Sample Size and Spot Size Mismatch 299</p> <p>14.4.3.4 Non-detectable Elements in the Layer: NiP Layers 300</p> <p>14.4.4 Characterization of Ultrathin Layers 302</p> <p>14.4.5 Multilayer Systems 304</p> <p>14.4.5.1 Layer Systems 304</p> <p>14.4.5.2 Measurement Technology 305</p> <p>14.4.5.3 Example: Analysis of CIGS Solar Cells 305</p> <p>14.4.5.4 Example: Analysis of Solder Structures 306</p> <p>14.4.6 Samples with Unknown Coating Systems 307</p> <p>14.4.6.1 Preparation of Cross Sections 308</p> <p>14.4.6.2 Excitation at Grazing Incidence with Varying Angles 309</p> <p>14.4.6.3 Measurement in Confocal Geometry 311</p> <p><b>15 Spot Analyses </b><b>313</b></p> <p>15.1 Particle Analyses 313</p> <p>15.1.1 Analytical Task 313</p> <p>15.1.2 Sample Preparation 314</p> <p>15.1.3 Analysis Technology 315</p> <p>15.1.4 Application Example:Wear Particles in Used Oil 315</p> <p>15.1.5 Application Example: Identification of Glass Particles by Chemometrics 316</p> <p>15.2 Identification of Inclusions 318</p> <p>15.3 Material Identification with Handheld Instruments 318</p> <p>15.3.1 Analytical Tasks 318</p> <p>15.3.2 Analysis Technology 319</p> <p>15.3.3 Sample Preparation and Test Conditions 320</p> <p>15.3.4 Analytical Accuracy 320</p> <p>15.3.5 Application Examples 321</p> <p>15.3.5.1 Example: Lead in Paint 321</p> <p>15.3.5.2 Example: Scrap Sorting 321</p> <p>15.3.5.3 Example: Material Inspection and Sorting 322</p> <p>15.3.5.4 Example: Precious Metal Analysis 322</p> <p>15.3.5.5 Example: Prospecting and Screening in Geology 323</p> <p>15.3.5.6 Example: Investigation of Works of Art 323</p> <p>15.4 Determination of Toxic Elements in Consumer Products: RoHS Monitoring 324</p> <p>15.4.1 Analytical Task 324</p> <p>15.4.2 Analysis Technology 325</p> <p>15.4.3 Analysis Accuracy 327</p> <p>15.5 Toxic Elements in Toys: Toys Standard 328</p> <p>15.5.1 Analytical Task 328</p> <p>15.5.2 Sample Preparation 328</p> <p>15.5.3 Analysis Technology 330</p> <p><b>16 Analysis of Element Distributions </b><b>331</b></p> <p>16.1 General Remarks 331</p> <p>16.2 Measurement Conditions 332</p> <p>16.3 Geology 333</p> <p>16.3.1 Samples Types 333</p> <p>16.3.2 Sample Preparation and Positioning 333</p> <p>16.3.3 Measurements on Compact Rock Samples 334</p> <p>16.3.3.1 Sum Spectrum and Element Distributions 334</p> <p>16.3.3.2 Object Spectra 335</p> <p>16.3.3.3 Treatment of Line Overlaps 336</p> <p>16.3.3.4 Maximum Pixel Spectrum 339</p> <p>16.3.4 Thin Sections of Geological Samples 340</p> <p>16.4 Electronics 342</p> <p>16.5 Archeometric Investigations 344</p> <p>16.5.1 Analytical Tasks 344</p> <p>16.5.2 Selection of an Appropriate Spectrometer 346</p> <p>16.5.3 Investigations of Coins 347</p> <p>16.5.4 Investigations of Painting Pigments 349</p> <p>16.6 Homogeneity Tests 350</p> <p>16.6.1 Analytical Task 350</p> <p>16.6.2 Homogeneity Studies Using Distribution Analysis 351</p> <p>16.6.3 Homogeneity Studies Using Multi-point Measurements 352</p> <p><b>17 Special Applications of the XRF </b><b>355</b></p> <p>17.1 High-Throughput Screening and Combinatorial Analysis 355</p> <p>17.1.1 High-Throughput Screening 355</p> <p>17.1.2 Combinatorial Analysis for Drug Development 357</p> <p>17.2 Chemometric Spectral Evaluation 358</p> <p>17.3 High-Resolution Spectroscopy for Speciation Analysis 361</p> <p>17.3.1 Analytical Task 361</p> <p>17.3.2 Instrument Technology 361</p> <p>17.3.3 Application Examples 362</p> <p>17.3.3.1 Analysis of Different Sulfur Compounds 362</p> <p>17.3.3.2 Speciation of Aluminum Inclusions in Steel 363</p> <p>17.3.3.3 Determination of SiO2 in SiC 365</p> <p><b>18 Process Control and Automation </b><b>367</b></p> <p>18.1 General Objectives 367</p> <p>18.2 Off-Line and At-Line Analysis 369</p> <p>18.2.1 Sample Supply and Analysis 369</p> <p>18.2.2 Automated Sample Preparation 371</p> <p>18.3 In-Line and On-Line Analysis 376</p> <p><b>19 Quality Management and Validation </b><b>379</b></p> <p>19.1 Motivation 379</p> <p>19.2 Validation 380</p> <p>19.2.1 Parameters 384</p> <p>19.2.2 Uncertainty 385</p> <p><b>Appendix A Tables </b><b>387</b></p> <p><b>Appendix B Important Information </b><b>419</b></p> <p>B.1 Coordinates of Main Manufacturers of Instruments and Preparation Tools 419</p> <p>B.2 Main Suppliers of Standard Materials 422</p> <p>B.2.1 Geological Materials and Metals 422</p> <p>B.2.2 Stratified Materials 423</p> <p>B.2.3 Polymer Standards 424</p> <p>B.2.4 High Purity Materials 424</p> <p>B.2.5 Precious Metal Alloys 425</p> <p>B.3 Important Websites 425</p> <p>B.3.1 Information About X-Ray Analytics and Fundamental Parameters 425</p> <p>B.3.2 Information About Reference Materials 426</p> <p>B.3.3 Scientific Journals 427</p> <p>B.4 Laws and Acts, Which Are Important for X-Ray Fluorescence 427</p> <p>B.4.1 Radiation Protection 427</p> <p>B.4.2 Regulations for Environmental Control 428</p> <p>B.4.3 Regulations for Performing Analysis 428</p> <p>B.4.4 Use of X-ray Fluorescence for the Chemical Analysis 428</p> <p>B.4.4.1 General Regulations 428</p> <p>B.4.4.2 Analysis of Minerals 429</p> <p>B.4.4.3 Analysis of Oils, Liquid Fuels, Grease 430</p> <p>B.4.4.4 Analysis of Solid Fuels 432</p> <p>B.4.4.5 Coating Analysis 433</p> <p>B.4.4.6 Metallurgy 433</p> <p>B.4.4.7 Analysis of Electronic Components 434</p> <p>References 435</p> <p>Index 453 </p>
X-ray fluorescence spectroscopy for laboratory applications is a strongly recommended, high-quality monograph in the field of X-ray spectroscopy. [?] [I]t is a unique resource for practitioners and scientists.<br> Kerstin Leopold in Analytical and Bioanalytical Chemistry (29.07.2021)<br>
<p><b>Michael </b><b>Haschke, PhD,</b> has been working in the product management of various companies for more than 35 years where he was responsible for the development and introduction to market of new x-ray fluorescence techniques, mainly in the field of energy-dissipative spectroscopy. </p> <p> </p> <p><b>Jörg</b><b> Flock, PhD,</b> is Head of the Central Laboratory of ThyssenKrupp Stahl AG and well-versed with different analytical techniques, in particular with x-ray fluorescence spectroscopy. He has extensive practical experience in using this technique for the analysis of samples with different qualities and the interpretation of the acquired results. </p> <p> </p> <p><b>Michael Haller</b> has been using X-rays as an analytical tool for over thirty years, first in X-ray crystallography, then later in the development and application of polycapillary X-ray optics. Further he has developed new applications for coating thickness instruments. In 2018 he became co-owner of CrossRoads Scientific, a company specializing in the development of analytical X-ray software.</p>

Diese Produkte könnten Sie auch interessieren:

Chemistry for the Protection of the Environment 4
Chemistry for the Protection of the Environment 4
von: Robert Mournighan, Marzenna R. Dudzinska, John Barich, Marjorie A. Gonzalez, Robin K. Black
PDF ebook
213,99 €
Wörterbuch Labor / Laboratory Dictionary
Wörterbuch Labor / Laboratory Dictionary
von: Klaus Roth, Theodor C.H. Cole
PDF ebook
36,99 €